INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION®MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ® ORGANIZATION INTERNATIONALE DE NORMALISATION

ISO inch screw threads - Allowances and tolerances

Filetages ISO en inches - Jeux et tolérances

First edition - 1978-10-15

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5864:1978 https://standards.iteh.ai/catalog/standards/sist/a2baef44-4cd2-4b46-9f1c-8ed3c1e6fca7/iso-5864-1978

UDC 621.882,082: 621,753,1

Ref. No. ISO 5864-1978 (E)

Descriptors: screw threads, ISO screw threads, specifications, designations, classifications, dimensional tolerances, clearances.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 5864 was developed by Technical Committee ISO/TC 1, Screw threads, and was circulated to the member bodies in December EW 1976.

It has been approved by the member bodies of the following countries:

Australia

Hungary

ISONorway 78

Belgium Bulgaria httpm/diandards.iteh.ai/catalog/stSouth/Africa/tRepl/ofcd2-4b46-9flc-

Denmark

Ireland Korea, Rep. of 8ed3c1e6fi**Sweden** 864-1978 U.S.A.

Egypt, Arab Rep. of

Mexico

Yugoslavia

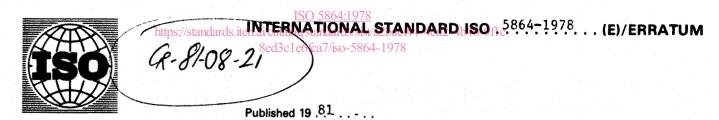
Germany, F.R.

Netherlands

The member bodies of the following countries expressed disapproval of the document on technical grounds :

Canada United Kingdom U.S.S.R.

AMENDMENT SLIP Published 1979-03-01


INTERNATIONAL ORGANIZATION FOR STANDARDIZATION•МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ•ORGANISATION INTERNATIONALE DE NORMALISATION

ISO inch screw threads — Allowances and tolerances

MODIFICATION TO FOREWORD (Inside front cover)

The ISO member body for Ghana has now approved this International Standard. Ghana should therefore be included in the list of countries whose member bodies have approved the document.

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

ISO inch screw threads - Allowances and tolerances

Title)

ERRATUM

Page 11

Table 4, the value indicated for 20 threads per inch, length of thread engagement above 0,667 \underline{D} up to and including 1,500 \underline{D} and thread size 0,337 5 should be 82 instead of 78.

ext

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5864:1978 https://standards.iteh.ai/catalog/standards/sist/a2baef44-4cd2-4b46-9f1c-8ed3c1e6fca7/iso-5864-1978

CONTENTS	Pag
1 Scope and field of application	1
2 References	1
3 Terminology and symbols	1
4 Sizes and series	1
5 Thread classes	1
6 Allowances and formulae	2
7 Tolerances and formulae	2
iTeh ST8 AccuracyA.R.D. P.R.E.V.IE.W	3
9 Design profiles (maximum material profile) and disposition of Staclerances (US-11C1).	3
10 Modified threads	3
https://standards.it311.ai Designations .rds/sist/a2baef14-4cd2-4b46-9f1c	3
12 8 Lengths of thread engagement	4
13 Root radius control	. 1

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 5864:1978

https://standards.iteh.ai/catalog/standards/sist/a2baef44-4cd2-4b46-9f1c-8ed3c1e6fca7/iso-5864-1978

ISO inch screw threads — Allowances and tolerances

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies a system of allowances and tolerances for standard thread series, covering the range of diameters from 0.06 to 6 in, and pitches from 80 to 4 threads per inch.

2 REFERENCES

ISO 263, ISO inch screw threads — General plan and selection for screws, bolts and nuts — Diameter range 0.06 to 6 in.

ISO/R 725, ISO inch screw threads - Basic dimensions. A R D PR 1

https://standards.iteh.ai/catalog/standards/si

ISO 5408, Screw threads - Vocabulary. 1)

(standards.iteh.ai)

3 TERMINOLOGY AND SYMBOLS

3.1 Terminology

8ed3c1e6fca7/iso-5
In this International Standard, the terms "external threads"
and "internal threads" are synonymous with bolt threads
and nut threads, respectively, as used in some other International Standards.

3.2 Symbols

The following symbols are used:

Symbol	Explanation
d	Major diameter of external thread (nominal diameter)
d_2	Pitch diameter of external thread
d ₁	Minor diameter of external thread
D	Major diameter of internal thread (nominal diameter)
D_2	Pitch diameter of internal thread
D ₁	Minor diameter of internal thread
P	Pitch
n	Number of threads per inch
L_{e}	Length of thread engagement (for formula)

4 SIZES AND SERIES

LE

SE

PD

MOD

Н

Nominal sizes, basic dimensions and the thread pitches available in each size and the pitch series in which they are classified appear in ISO 263 and ISO/R 725.

Length of thread engagement (for designation)

Modified diameter limits (for designation)

Special length of thread engagement

Pitch diameter (for designation)

Height of fundamental triangle

Tolerances for d, d_2 , D_2 and D_1

(for designation)

Thread series are groups of diameter-pitch combinations distinguished from each other by the number of threads per inch applied to series of specific diameters. The various diameter-pitch combinations are of three series with graded pitches, coarse (UNC), fine (UNF) and extra fine (UNEF) and eight series with constant pitches, 4 UN, 6 UN, 8 UN, 12 UN, 16 UN, 20 UN, 28 UN, and 32 UN.

5 THREAD CLASSES

5.1 Thread classes are distinguished from each other by the amounts of tolerance and allowance. The function of these classes is to provide for various grades of fit when threaded parts are assembled. Three classes of external threads (1A, 2A, and 3A), and three classes of internal threads (1B, 2B, and 3B) have been established for general purpose use.

Thread classes 1A and 1B are applicable for bolts and nuts where easy assembly is required or where rough handling and foreign material may restrict assembly of a closer tolerance class. This class provides a liberal tolerance and is applicable only to sizes 0.25 inch and over the UNC and UNF series.

¹⁾ At present at the stage of draft.

Thread classes 2A and 2B are applicable to general usage, including production of bolts, screws, nuts and similar threaded fasteners. The maximum material diameters of class 2A (external) uncoated threads are less than basic by the amount of the allowance.

Customarily, for class 2A threads having an additive finish, the maximum allowable diameter is increased to the basic size, the value being the same as for class 3A. The allowance minimizes galling and seizing in high-cycle wrench assembly, or it can be used to accommodate plated finishes or other coatings.

Thread classes 3A and 3B are applicable where closeness of fit and accuracy of lead and angle of thread are important. They are obtainable consistently only by the use of high quality production equipment supported by a very efficient system of gauging and inspection. No allowance is provided.

5.2 Fits other than that obtained with class 2A with class 2B, for example, may be obtained by using class 2A with 1B or 3B, or class 2B with 1A or 3A.

6 ALLOWANCES AND FORMULAE

The allowance is applied negatively to the basic size to give a maximum material size below basic. An allowance is applied only to the classes 1A and 2A (external threads).

The allowance, in inches, for the thread classes 1A and 2A_{SO 5864.1978} calculated from the following formula inches is calculated from the following formula inches it is calculated from the following for its calculated from the fol

0.3 (0.001 5
$$\sqrt[3]{D}$$
 + 0.001 5 $\sqrt{L_p}$ + 0.015 $\sqrt[3]{P^2}$) 8ed3c1e6fca7

Class 3 A: Zero allowance.

7 TOLERANCES AND FORMULAE

7.1 Major diameter tolerance

The major diameter tolerance $T_{\it d}$ varies with the pitch and the thread series, but is independent of the length of engagement.

The tolerance for the major diameter for the thread classes indicated is calculated from the following:

7.1.1 External thread

 T_d , class 1 A: 0.09 $\sqrt[3]{P^2}$

 T_d , classes 2A and 3A: $0.06\sqrt[3]{P^2}$

7.1.2 Internal thread

No tolerance is given for the major diameter of the nut thread. (See clause 13.)

7.2 Pitch diameter tolerances

The pitch diameter tolerances T_{d_2} and T_{D_2} vary with the diameter, pitch, length of engagement, and thread class.

The tolerance for the pitch diameter for the thread classes indicated is calculated from the following:

7.2.1 External thread

 T_{d_2} , class 2A : 0.001 5 $\sqrt[3]{D}$ + 0.001 5 $\sqrt{L_e}$ + 0.015 $\sqrt[3]{P^2}$

 T_{d_2} , class 1A : 1.5 (tolerance of class 2A)

 T_{da} , class 3A : 0.75 (tolerance of class 2A)

7.2.2 Internal thread

 T_{D_2} , class 1B: 1.95 (tolerance of class 2A)

 T_{D_2} , class 2B: 1.30 (tolerance of class 2A)

 T_{D_2} , class 3B : 0.975 (tolerance of class 2A)

7.3 Minor diameter tolerances

The minor diameter tolerance, T_{D_1} , varies with diameter, pitch and thread class but is independent of the length of engagement. Modifications may be made for special applications.

The tolerance for the minor diameter for lengths of engagement up to $1.5\,D$ of the thread classes indicated is calculated from the following formulae :

iso-5864-1978 **7.3.1** External thread

No tolerance is given for the minor diameter of the bolt thread. For root radius control, see clause 13.

7.3.2 Internal thread

 T_{D_1} , classes 1B and 2B for all sizes below 0.25 in : $(0.05\sqrt[3]{P^2} + \frac{0.03}{D}P) - 0.002$

The resultant value should not exceed 0.394 P, or be less than 0.25 $P - 0.4 P^2$.

 $T_{D_{\, \rm 1}}$, classes 1B and 2B for all sizes 0.25 in and larger : 0.25 P-0.4 P^2

 T_{D_1} , class 3B: $(0.05\sqrt[3]{P^2} + \frac{0.03}{D}P) - 0.002$

The resultant value for class 3B should not exceed 0.394 P, or be less than 0.23 P-1.5 P^2 for 80 to 13 threads per inch. For 12 threads per inch and coarser, the tolerance shall not be less than 0.12 P, which is, in effect, the tolerance for all sizes 1 in and larger having 12 threads per inch and coarser.

For applications having lengths of thread engagement less than $0.667\,D$ or more than $1.5\,D$, the values should be modified in accordance with rules given in clause 10.

8 ACCURACY

The final dimension is rounded off by standard conventional means, during actual calculation to the eight place, and giving the final answer to the fourth place; for example, 0.003 291 81 is rounded off to 0.003 3 when the dimension is required to the fourth place.

9 DESIGN PROFILES (MAXIMUM MATERIAL PROFILE) AND DISPOSITION OF TOLERANCES

- 9.1 The design profiles are the maximum material limit of the class 3A external and classes 1B, 2B and 3B internal threads and are shown in figures 1 (nut) and 2 (bolt).
- 9.2 For classes 1A, and 2A, the maximum material limit differs from the design profile by the amount of the allowance.
- 9.3 Tolerances are applied to the maximum material limit to determine the minimum material limit.
- 9.4 The disposition of tolerances, allowances and crest clearances are shown in figures 3 classes 1A, 2A, 1B and 2B) and 4 (classes 3A and 3B).
- 9.5 The root contours of the design profiles are designed to clear a crest width of 0.125 P on the external thread sand crest width of 0.250 P on the internal thread (see 1.1978 clause clause 13).

 | Example | Exampl

In these tables, the tolerances for lengths of engagement less than $0.333\,D$ are 0.5 of the formula values. For lengths of engagement from $0.333\,D$ to $0.667\,D$, the tolerances are 0.75 of the formula values; for lengths of engagement from $0.667\,D$ to $1.5\,D$ the tolerances are equal to the formula values; and for lengths of engagement $1.5\,D$ to $3.0\,D$, the tolerances are 1.25 times the formula values. Where the tolerance value so computed is more than $0.394\,P$, which corresponds to a resulting minimum thread height of $53\,\%$ of $0.75\,H$, the value is adjusted to equal $0.394\,P$ (= $0.455\,H$). (See clause 7.)

Nut threads requiring modified minor diameters for lengths of thread engagement less than 0.667 D to develop the optimum strength of the fastening, or longer than 1.5 D to reduce tapping difficulties, should be designated MOD in the screw thread designation.

11 DESIGNATIONS

A complete designation for a screw thread for standard length of engagement comprises the nominal size, threads per inch, and designations for the thread series and thread class. To this may be appended other supplementary symbols for threads with modified major (crest) diameter limits, long lengths of engagement, etc., when and as applicable.

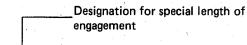
Examples of complete screw thread designations

FOR STANDARD LENGTHS OF ENGAGEMENT (see clause 12):
st/a2haef4-4cd2-4b46-9flc-


10 MODIFIED THREADS

Modification of minor diameter tolerances of internal thread for special length of engagement.

Occasionally, there are applications where the length of engagement of the mating threads, or the combinations of materials used for mating threads, are such that the internal maximum minor diameter may not provide the desired strength of the threads. Experience has shown that for length of engagement less than 0.667 D (the minimum thickness of standard nuts) the minor diameter tolerance can be reduced without causing tapping difficulties.


In other applications, the length of engagement of mating threads may exceed 1.5 D because of design considerations or the combination of materials used for mating. As the threads engaged increase in number, their depth of engagement can be shallower and still develop stripping strength greater than the external thread breaking strength. In these cases, the internal thread minor diameter tolerance is increased. By working to the minimum permissible material limit, the possibility of tapping difficulties is reduced.

To reduce the number of minor diameter tolerances to a practical minimum, tolerances for a selection of recommended diameters, lengths of engagement, and pitches are given in table 2 for thread classes 1B and 2B, and tables 3 and 4 for thread class 3B.

FOR SPECIAL LENGTHS OF ENGAGEMENT (see clause clause 12):

(Actual pitch diameter and length of engagement are shown.)

1/2-13 UNC-SE-2A (0.500-13 UNC-SE-2A) PD 0.448 5- 0.442 2 LE 1.00