INTERNATIONAL STANDARD

First edition 1997-08-01

Plastics piping systems — Glass-reinforced thermosetting plastics (GRP) pipes and fittings — Methods for regression analysis and their use

Systèmes de canalisation en matières plastiques — Tubes et raccords plastiques thermodurcissables renforcés de verre (PRV) — Méthodes pour une analyse de régression et leurs utilisations (standards.tten.al)

ISO 10928:1997 https://standards.iteh.ai/catalog/standards/sist/3d778360-4d50-40f4-9044-6e62fad2127d/iso-10928-1997

Contents		Page
1 Scope		1
2 Principle		1
3 Procedures	for determining the functional relationships	1
3.1 Linear re	elationships - Methods A and B	1
3.2 Second or	rder polynomial relationships - Method C	12
4 Application	n of methods to product design and testing	16
4.1 General		16
4.2 Design		17
4.3 Examples	for validation of calculation procedures $V = W$	
for desig	ⁿ (standards iteh ai)	22
4.4 Procedure	es for verifying conformance to product design	
and perfo	ormance values ISO 10928:1997	27
4.5 Examples	for valuidation of claiculation drod dures 4for 40f4-9044-	
design or	r product performance 63 er 1 fidae i 69 28-1997	32
Annex A Mat	hematical procedures	37
A.1 Matrix sy	stem	37
A.2 Substitut	tion system	38

© ISO 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch

X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and nongovernmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

iTeh STANDARD PREVIEW

International Standard ISO 10928 was prepared by Technical Committee ISO/TC 138, Plastics pipes, a fittings and valves for the transport of fluids, Subcommittee SC 6, Reinforced plastics pipes and fittings for all applications. ISO 10928:1997

https://standards.iteh.ai/catalog/standards/sist/3d778360-4d50-40f4-9044-This International Standard 1977 technologally identical to EN 705:1994.

Annex A of this International Standard is for information only.

Introduction

This standard has been prepared to describe the procedures intended for analysing the regression of test data, usually with respect to time, and the use of the results in design and assessment of conformity with performance requirements. Its applicability has been limited to use with data obtained from tests carried out on samples. The referring standards require estimates to be made of the long-term properties of the pipe for such parameters as circumferential tensile strength, deflection and creep.

The committee investigated a range of statistical techniques that could be used to analyse the test data produced by tests that were destructive. Many of these simple techniques required the logarithms of the data to

- a)
- be normally distributed (standards.iteh.ai)
- b) produce a regression line having a negative slope; and
- have a sufficiently high regression correlation (see table 1). C)https://standards.iteh.ai/catalog/standards/sist/3d778360-4d50-40f4-9044-

6e62fad2127d/iso-10928-1997 Whilst the last two conditions can be satisfied, analysis has shown that there is a skew to the distribution and hence this primary condition is not satisfied. Further investigation into techniques that can handle skewed distributions resulted in the adoption of the covariance method for analysis of such data for this standard.

The results from non-destructive tests, such as creep or changes in deflection with time, often satisfy these three conditions and hence simpler procedures, using time as the independent variable, can also be used in accordance with this standard.

Plastics piping systems - Glass-reinforced thermosetting plastics (GRP) pipes and fittings -Methods for regression analysis and their use

1 Scope

This standard specifies procedures suitable for the analysis of data which, when converted into logarithms of the values, have either a normal or a skewed distribution. It is intended for use with the test methods and referring standards for glass-reinforced plastics pipes or fittings for the analysis of properties as a function of, usually, time. However it can be used for the analysis of any other data.

For use depending upon the nature of the data, three methods are specified. The extrapolation using these techniques typically extends the trend from data gathered over a period of approximately 10000 h, to a prediction of the property at 50 years.

2 Principle

iTeh STANDARD PREVIEW (standards.iteh.ai)

Data are analysed for regression using methods based on least squares analysis which can accommodate the incidence of a skew and/or a normal distribution and the applicability of first order or a second order polynomial relationship.

The three methods of analysis used comprise the following:

- method A: covariance using a first order relationship;
- method B: least squares with time as the independent variable using
- a first order relationship;
- method C: least squares with time as the independent variable using
- a second order relationship.

The methods include statistical tests for the correlation of the data and the suitability for extrapolation.

3 Procedures for determining the functional relationships

3.1 Linear relationships - Methods A and B

3.1.1 Procedures common to methods A and B

Use method A (see 3.1.2) or method B (see 3.1.3) to fit a straight line of the form $% \left(\left(1-\frac{1}{2}\right) \right) =\left(1-\frac{1}{2}\right) \left(1-\frac{1}{2}\right) \left$

 $y = a + b \times x$

... (1)

1

where:

y is the logarithm (lg) of the property being investigated;

- a is the intercept on the y axis;
- b is the slope;
- x is the logarithm (lg) of the time, in hours.

3.1.2 Method A - Covariance method

3.1.2.1 General

For method A calculate the following variables in accordance with 3.1.2.2 to 3.1.2.5:

$$Q_{\rm Y} = \frac{\sum (y_{\rm i} - Y)^2}{n} \qquad ... (2)$$

$$Q_{\rm x} = \frac{\Sigma (x_{\rm i} - X)^2}{\dots}$$
 (3)

$$Q_{xy} = \frac{\sum \{ (x_1 - X) \times (y_1 - Y) \}}{n}$$
(4)

where:	<u>ISO 10928:1997</u>
	https://standards.iteh.ai/catalog/standards/sist/3d778360-4d50-40f4-9044-
$Q_{\mathbf{Y}}$	is the sum of the squared freshounds oparallel to the y axis
	divided by n;
$Q_{\mathbf{x}}$	is the sum of the squared residuals parallel to the x axis
	divided by n;
Q_{xy}	is the sum of the squared residuals perpendicular to the line,
	divided by n;
Y	is the arithmetic mean of the y data, i.e.
	$x = \sum y_i$
	$\frac{1}{n}$
X	is the arithmetic mean of the x data, i.e.
	$x = \frac{\Sigma x_i}{\Sigma x_i}$
	n n
x _i ,	y _i are individual values;
п	is the total number of results (pairs of readings for $x_{ m i},~y_{ m i})$.

1

NOTE: If the value of Q_{XY} is greater than zero the slope of the line is positive and if the value of Q_{XY} is less than zero then the slope is negative.

3.1.2.2 Suitability of data

Calculate the squared, r^2 , and the linear coefficient of correlation, r, using the following equations:

$$r^{2} = \frac{Q_{xy}^{2}}{Q_{x} \times Q_{y}} \qquad \dots \qquad (5)$$

$$r = |(r^2)^{0,5}|$$
 ... (6)

If the value of r^2 or r is less than the applicable minimum value given in table 1 as a function of n, consider the data unsuitable for analysis.

Table 1: Minimum values for the squared, r^2 , and linear coefficient of correlation, r, for acceptable data from n pairs of data

(Minimum values		(Minimur	n values
(II - Z)	Ľ	Ľ	(II - Z)	L	L
11	0,6416	0,8010	DA ₂ RD	0,3816	6177
12	0,6084	0,7800	24	0,3689	0,6074
13	0,5781	0,7603	ar₂₅s. 11	C 0,3569	0,5974
14	0,5506	0,7420	30	0,3070	0,5541
15 16 17 18 19 20 21 22	0,5250 0,5018 0,4805 0,4606 0,4425 0,4256 0,4256 0,4099 0,3953	0,7246 dards,i7684/atal 0,699 262fa 0,6787 0,6652 0,6524 0,6402 0,6287	ISO 10928:199 og/standards/sist d2127daig-109 50 60 70 80 90	7 0,2693 3d07239974 280192160 0,1965 0,1663 0,1443 0,1273 0,1139	50-40,4896 0,4648 0,4433 0,4078 0,3799 0,3568 0,3375
			100	0,1031	0,3211
NOTE: In table 1 and elsewhere in this standard, the equations and corresponding values for r ² and r are given, for convenience of use in conjunction with reference data published elsewhere in terms of only r ² or r.					

3.1.2.3 Functional relationships

To find a and b for the functional relationship line

 $y = a + b \times x$

... (1)

first set

$$\Gamma = \frac{Q_{\rm y}}{Q_{\rm x}} \tag{7}$$

then calculate *a* and *b* using the following equations:

$$b = -(\Gamma)^{0,5}$$
 (8)

$$a = Y - b \times X \qquad \dots \qquad (9)$$

3.1.2.4 Calculation of variances

If t_u is the applicable time to failure, then set

$$x_{u} = lg t_{u} \qquad \dots (10)$$

Using equations (11), (12) and (13) respectively, calculate for i = 1 to n the following sequence of statistics:

- the best fit x_i ' for true x_i ;
- the best fit y_i ' for true y_i ; and
- the error variance to for ANDARD PREVIEW

$x_{i}' = \frac{\Gamma \times x_{i} + b \times (y_{i} - (standards.iteh.ai))}{2 \times \Gamma} \qquad \dots \quad (11)$

$$y_{i}' = a + b \times \frac{x_{i}'}{x_{i}'} + \sum_{i} \sum_{j=1}^{150-10928-1997} (12)$$

$$\sigma_{\delta}^{2} = \frac{\{\Sigma(y_{1} - y_{1})^{2} + \Gamma \times \Sigma(x_{1} - x_{1})^{2}\}}{(n - 2) \times \Gamma} \qquad \dots (13)$$

Calculate the following quantities:

$$E = \frac{b \times \sigma_{\delta}^2}{2 \times Q_{\rm xy}} \qquad \dots \qquad (14)$$

$$D = \frac{2 \times \Gamma \times b \times \sigma_{\delta}^2}{n \times Q_{\rm XY}} \qquad \dots \qquad (15)$$

Calculate the variance C of the slope b using the following equation:

 $C = D \times (1 + E) \qquad \dots \qquad (16)$

3.1.2.5 Check for the suitability of data for extrapolation

If it is intended to extrapolate the line, calculate T using the following equation:

If the absolute value |T| (i.e. ignoring signs) of T is equal to or greater than the applicable value for *Student's* t, t_v , shown in table 2 for (n - 2) degrees of freedom then consider the data suitable for extrapolation.

Degree of	Student's t value	Degree	Student's	Degree	Student's
freedom		freedom	c varae	freedom	
(n - 2)	t _v	(n - 2)	t _v	(n - 2)	t _v
1	12,7062	36	2,0281	71	1,9939
2	4,3027	37	2,0262	72	1,9935
3	3,1824	38	2,0244	73	1,9930
4	2,7764	39	2,0227	74	1,9925
5	2,5706	40	2,0211	/5	1,9921
6	2,4469	41	2,0195	76	1,9917
	2,3646	42	2,0181		1,9913
8 I I	2 2622		2 0154		1,9908
10	2,2022	da45de	12,0134	80	1 9901
- 0	-/[51:41]	uaius.	iterrai)	00	1,0001
11	2,2010	46	2,0129	81	1,9897
12	2,1788	<u>ISO 40928:1</u>	2,0112	82	1,9893
https://sta	ndar2ls.16104/cata	og/stah8ards/s	lst/327,70106-4d5	0-4018-3044-	1,9890
14	2,1448621	d2124@/iso-10	092821000796	84	1,9886
10	2,1315	50	2,0086	85	1,9883
16	2,1199	51	2,0076	86	1,9879
17	2,1098	52	2,0066	87	1,9876
18	2,1009	53	2,0057	88	1,9873
19	2,0930	54	2,0049	89	1,9870
20	2,0860	55	2,0040	90	1,9867
21	2,0796	56	2,0032	91	1,9864
22	2,0739	57	2,0025	92	1,9861
23	2,0687	58	2,0017	93	1,9858
24	2,0639	59	2,0010	94	1,9855
25	2,0595	60	2,0003	95	1,9853
26	2,0555	61	1,9996	96	1,9850
27	2,0518	62	1,9990	97	1,9847
28	2,0484	63	1,9983	98	1,9845
29	2,0452	64	1,9977	99	1,9842
30	∠,∪4∠3	65	1,99/1	TOO	⊥,9840
31	2,0395	66	1,9966		
32	2,0369	67	1,9960		
33	2,0345	68	1,9955		
34 25	2,0322	עס יעס	1 9949		
35	2,0301	70	1,7744		

Table 2: Percentage points of Student's t distribution (upper 2,5 % points; two sided 5 % level of confidence; t_v for 97,5 %)

3.1.2.6 Validation of statistical procedures by an example calculation

The data given in table 3 together with the results given in this example are for use to verify that the other statistical procedures as adopted by users will produce results similar to those obtained from the equations given in this standard. For the purposes of example, the property in question is represented by V, the values for which are of a typical magnitude and in no particular units. Because of rounding errors, it is unlikely that the results will agree exactly, so for the calculation procedure to be acceptable, the results obtained for r, r^2 , b, a, and the mean value of V, $V_{\rm m}$, shall agree to within \pm 0,1 % of the values given in this example, as applicable. The values of other statistics are provided to assist checking of the procedure.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 10928:1997</u> https://standards.iteh.ai/catalog/standards/sist/3d778360-4d50-40f4-9044-6e62fad2127d/iso-10928-1997

	n	V	y	time	(1 - t + t)
			(19 V)	h	(time in h)
	1 2 3 4	30,8 30,8 31,5 31,5	1,4886 1,4886 1,4983 1,4983	5184 2230 2220 12340	3,7147 3,3483 3,3464 4,0913
	5 6 7 8	31,5 31,5 31,5 32,2	1,4983 1,4983 1,4983 1,5079	10900 12340 10920 8900	4,0374 4,0913 4,0382 3,9494
	9 10 11 12	32,2 32,2 32,2 32,9	1,5079 1,5079 1,5079 1,5172	4173 8900 878 4110	3,6204 3,9494 2,9435 3,6138
	13 14 15 16	32,9 32,9 32,9 33,6	1,5172 1,5172 1,5172 1,5263	1301 3816 669 1430	3,1143 3,5816 2,8254 3,1553
ľ.	18 19 20	33,6 33,6 35,6 33,6	1,5263 1,5263 10,5263 1,5263	D 2103 589 it 010 1299	2,7701 3,2330 3,1136
https://	standard 23 24	s.iteb ai cat 35,0 35,6662 35,0	ISO 10928: 1,5441 alog/standards/ adq1,2,4490-1 1,5441	997 sist/3077836 0928 ₂ 1887 684)-4d52-44346 2-6493 2,6684 2,8351
	25 26 27 28	36,4 36,4 36,4 36,4	1,5611 1,5611 1,5611 1,5611	104 142 204 209	2,0170 2,1523 2,3096 2,3201
	29 30 31 32	38,5 38,5 38,5 38,5 38,5	1,5855 1,5855 1,5855 1,5855 1,5855	9 13 17 17	0,9542 1,1139 1,2304 1,2304
Means: $Y = 1,5301;$ $X = 2,9305$					

Table 3: Basic data for example calculation and statistical analysis validation

Sums of squares

$Q_{\mathbf{x}}$	=	0,79812;
Q_{Y}	=	0,00088;
$Q_{\rm xy}$	=	-0,02484.

© ISO

Coefficient of correlation

 $r^2 = 0,87999;$

r = 0,93808.

Functional relationships

 Γ = 0,00110; b = -0,03317; a = 1,62731.

Calculated variances (see 3.1.2.4)

 $E = 3,5202 \times 10^{-2};$

 $D = 4,8422 \times 10^{-6};$

 $C = 5,0127 \times 10^{-6}$ (the variance of b);

 $\sigma_{\delta}^2 = 5,2711 \times 10^{-2}$ (the error variance for x).

Check of the suitability for extrapolation (see 3,1,2,5)

n = 32;(standards.iteh.ai) $t_v = 2,0423;$ $T = -0,03317/(5,0127 \times 10^{-6})^{0,5} ISO 149281897;$ https://standards.iteh.ai/catalog/standards/sist/3d778360-4d50-40f4-9044-|T| = 14,8167 > 2,0423.6e62fad2127d/iso-10928-1997

The estimated mean values for V at various times are given in table 4 and shown in figure 1.

Table 4: Estimated mean values,

 $V_{\mathfrak{m}}$, for V

time h	v _m
0,1 1,0 10,0 1000 10000 100000 438000	45,76 42,39 39,28 36,39 33,71 31,23 28,94 27,55

 $S_{xy} = \Sigma \{ (x_i - X) \times (y_i - Y) \}$... (20)

(The sum of the squared residuals perpendicular to the line)

where:

Υ

is the arithmetic mean of the y data, i.e.

$$Y = \frac{\Sigma y_i}{n} ;$$

9