INTERNATIONAL STANDARD

IEC 60092-351

Third edition 2004-04

Electrical installations in ships

Part 351:

Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables

ie&747X862-9e86-49d3-b29b-382f577a78a7/iec-60092-351-2004

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (<u>www.iec.ch</u>)
- Catalogue of IEC publications

The on-line catalogue on the IEC web site (http://www.iec.ch/searchpub/cur fut.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently ssued publications (http://www.iec.ch/online_news/justpub/ip_entry.htm) is also available by email. Please contact the Customer Service Centre (see below) for further information.

Customer Service Centre

of you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>sustserv@rec.ch</u> Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

IEC 60092-351

Third edition 2004-04

Electrical installations in ships

Part 351:

Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables

(00)2-351:2004

aps//sandards.nenare.viry.vivaart/net-4/1502-7000-4/d5-02/0-502i5///d/0d//nec-000/2-551-200

© IEC 2004 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

PRICE CODE

CONTENTS

		ORD	3			
IN ⁻	TROD	UCTION				
1		pe				
2	Normative references					
3	Insulating materials					
	3.1	General	7			
	3.2	Electrical characteristics	8			
	3.3	Mechanical characteristics	9			
	3.4	Particular characteristics	10			
An	nex B	(normative) Determination of hardness of HEPR and HF HEPR insulation (normative) Determination of the elastic modulus of HEPR and HF HEPR	14			
		1				
An	nex C	(informative) Ozone resistance test – Alternative test method	16			
An Fig	nex C jure A	1	16			
An Fig Fig Ta	nex C gure A gure A ble 1 -	(informative) Ozone resistance test – Alternative test method	16 13			
An Fig Fig Ta	nex C gure A gure A ble 1 - nducto	(informative) Ozone resistance test – Alternative test method	16			
An Fig Ta co Ta	nex C gure A gure A ble 1 - nducto ble 2 -	(informative) Ozone resistance test – Alternative test method	16			
An Fig Fig Ta col Ta	gure A gure A ble 1 - nducto ble 2 - ble 3 -	(informative) Ozone resistance test – Alternative test method	16			

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL INSTALLATIONS IN SHIPS -

Part 351: Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards. Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60092-351 has been prepared by subcommittee 18A: Cables and cable installations, of IEC technical committee 18: Electrical installations of ships and of mobile and fixed offshore units.

This third edition cancels and replaces the second edition published in 2000, and constitutes a technical revision. The title has been updated and changes introduced to the tables.

The text of this standard is based on the following documents:

FDIS	Report on voting			
18A/252/FDIS	18A/254/RVD			

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 60092 consists of the following parts under the general title *Electrical installations in ships:*

Part 101: Definitions and general requirements Part 201: System design - General Part 202: System design - Protection Part 203: System design – Acoustic and optical signals Part 204: System design - Electric and electrohydraulic steering gear Part 301: Equipment - Generators and motors Part 302: Low-voltage switchgear and controlgear assemblies Part 303: Equipment – Transformers for power and lighting Part 304: Equipment - Semiconductor convertors Part 305: Equipment - Accumulator (storage) batteries Part 306: Equipment - Luminaires and accessories Part 307: Equipment – Heating and cooking appliances Part 350: Shipboard power cables – General construction and test requirements Part 351: Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables Part 352: Choice and installation of cables for low-voltage power systems Part 353: Single and multicore non-radial field power cables with extrupled solid insulation for rated voltages 1 kV and 3 kV Part 354: Single- and three-core power cables with extruded solid insulation for rated voltages 6 kV (Um = 7.2 kV) up to 30 kV (Um = 36 kV) Part 359: Sheathing materials for shipboard power and telecommunication cables Part 373: Shipboard telecommunication cables and radio-frequency cables - Shipboard flexible coaxial cables Part 374: Shipboard telecommunication cables and radio-frequency cables - Telephone cables for non-essential communication services Part 375 Shipboard telecommunication cables and radio-frequency cables - General instrumentation, control and communication cables Part 376: Cables for control and instrumentation circuits 150/250 V (300 V) Part 390: Cable penetrations - Fire type test procedures Part 401: Installation and test of completed installation Part 501: Special features - Electric propulsion plant Part 502: Tankers - Special features Part 503: Special features - A.C. supply systems with voltages in the range above 1 kV up to and including 11 kV Part 504: Special features - Control and instrumentation Part 506: Special reatures Ships carrying specific dangerous goods and materials hazardous only in bulk Part 507: Pleasure craft

The committee has decided that the contents of this publication will remain unchanged until 2008. At this date, the publication will be

Part 508: Switchgear and controlgear assemblies for rated voltages above 1kV and up to and including 15kV (in

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or

preparation)

· amended.

A bilingual version may be issued at a later date.

INTRODUCTION

IEC 60092 forms a series of International Standards concerning electrical installations in seagoing ships and fixed and mobile offshore units, incorporating good practice and co-ordinating as far as possible existing rules.

These standards form a code of practical interpretation and amplification of the requirements of the International Convention on Safety of Life at Sea, a guide for future regulations which may be prepared and a statement of practice for use by shipowners, shipbuilders, mobile and fixed offshore unit owners and builders and appropriate organisations.

ELECTRICAL INSTALLATIONS IN SHIPS -

Part 351: Insulating materials for shipboard and offshore units, power, control, instrumentation, telecommunication and data cables

Scope

This part of IEC 60092 specifies the requirements for electrical, mechanical and particular characteristics of insulating materials intended for use in shipboard and fixed and mobile offshore unit power, control, instrumentation, telecommunication and data cables.

Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies

IEC 60502-1:1997, Power cables with extruded insulation and their accessories for rated voltages from 1 kV ($U_{\rm m}$ = 1,2 kV) up to 30 kV ($U_{\rm m}$ = 36 kV) – Part 1: Cables for rated voltages of 1 kV $(U_m = 1, 2 kV)$ and 3 kV $(U_m = 3, 6 kV)$

IEC 60754-2, Test on gases evolved during combustion of electric cables - Part 2: Determination of degree of acidity of gases evolved during the combustion of materials taken from electric cables by measuring pH and conductivity

IEC 60811-1-1:1993, Common test methods for insulating and sheathing materials of electric cables - Part 1: Methods for general application - Measurement of thickness and overall dimensions - Tests for determining the mechanical properties 1) Amendment 1 (2001)

IEC 60811-1-2:1995, Common test methods for insulating and sheathing materials of electric cables - Part 1: Methods for general application - Section Two: Thermal ageing methods Amendment (1989) Amendment 2 (2000)

IEC 60811-1-4:1985 Common test methods for insulating and sheathing materials of electric cables - Part 1: Methods for general application - Section four: Test at low temperature Amendment 1 (1993) Amendment 2 (2001)

IEC 60811-2-1:1998 Insulating and sheathing materials of electric and optical cables -Common test methods - Part 2-1: Methods specific to elastomeric compounds - Ozone resistance, hot set and mineral oil immersion tests 2) Amendment 1 (2001)

IEC 60811-3-1:1985 Common test methods for insulating and sheathing materials of electric cables - Part 3: Methods specific to PVC compounds - Section One: Pressure test at high temperature - Tests for resistance to cracking Amendment 1 (1994)

Amendment 2 (2001)

¹⁾ A consolidated edition 2.1 (2001) exists, including edition 2.0 and its Amendment 1.

²⁾ A consolidated edition 2.1 (2001) exists, including edition 2.0 and its Amendment 1.

IEC 60811-3-2:1985 Common test methods for insulating and sheathing materials of electric cables – Part 3: Methods specific to PVC compounds – Section Two: Loss of mass test – Thermal stability test
Amendment 1 (1993)

ISO 48, Rubber, vulcanized or thermoplastic – Determination of hardness (hardness between 10 IRHD and 100 IRHD)

3 Insulating materials

3.1 General

The types of insulating compound covered by this standard are listed in the following Table 1 together with their abbreviated designations and maximum rated conductor temperatures during normal operation and short-circuit.

Table 1 – Type of insulating compounds, abbreviated designation and maximum rated conductor temperature during normal operation and short circuit

Type of insulating compound	Abbreviated designation	Maximum rated conductor temperature °C			
		Normal operation	Short-circuit		
a) Thermoplastic:	inclaco				
 based upon polyvinyl chloride or copolymer of vinyl chloride and vinyl acetate 	PVC	70	150		
b) Elastomeric or thermoset:					
based upon ethylene-propylene rubber or similar (EPM or EPDM)	EPR	6M 80	250		
based upon high modulus or hard grade ethylene propylene rubber	HEPR -351:2004	90	250		
- based upon cross-linked polyethylene	e86 XLPE3-b2	b-382f5 ⁹⁰ /a78a7/i	ec-60250_35		
 based upon silicone rubber 	S 95	95	350 a		
 based upon ethylene-propylene rubber or similar (EPM or EPDM) halogen-free 	HF EPR	90	250		
 based upon high modulus or hard grade halogen-tree ethylene propylene rubber 	HF HEPR	90	250		
 based upon halogen-free cross-linked polyethylene 	HF XLPE	90	250		
 based upon halogen-free silicone rubber 	HF S 95	95	350 a		
 based upon cross-linked polyolefin material for halogen-free cables 	HF 90	90	250		

^a This temperature is applicable only to power cables and not appropriate for tinned copper conductors.

3.2 Electrical characteristics

The test requirements for electrical characteristics of insulating compounds are listed in the following Table 2.

Table 2 – Test requirements for electrical characteristics of insulating compounds

Designation of the insulating compound	EPR and HF EPR	HEPR and HF HEPR	XLPE and HF XLPE	S 95 and HF S 95	HF 90	PVC
1 Insulation resistance constant K_i (M Ω ·km)						
(see Clause 17 of IEC 60502-1)						
1a – at 20 °C, minimum;	3 670	3 670	3 670	1 500	500	36,7
1b – at maximum operating temperature,			/			
minimum	3,67	3,67	3,67	18	0,5	0,037
2 Increase in a.c. capacity after immersion in water at 50 °C						
2a – between the end of the 1st and the end of the 14th day, maximum (%)	15	15		15	15	15
2b – between the end of the 7th and the end of the 14th day, maximum (%)	5	5		5	5	5

