INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Wrought aluminium and aluminium alloys sheets, strips and plates —

Part 2: Mechanical properties

Tôles, bandes et tôles épaisses en aluminium et alliages d'aluminium corroyés —

Partie 2: Caractéristiques mécaniques

ISO

6361-2

First edition 1987-08-01

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 6361-2 was prepared by Technical Committee ISO/TC 79, *Light metals and their alloys.*

It cancels and replaces Technical Report ISO/TR 2136 : 1977, of which it constitutes a technical revision.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

© International Organization for Standardization, 1987

Wrought aluminium and aluminium alloys sheets, strips and plates —

Part 2:

Mechanical properties

1 Scope and field of application

In conjunction with ISO 6361-1, this part of ISO 6361 specifies the mechanical properties of wrought aluminium and aluminium alloys sheets, strips and plates for general engineering applications.

It applies to flat rolled products.

The chemical composition of these materials is given in ISO 209-1.

The designations of aluminium and aluminium alloys and the temper designations used in this International Standard are in accordance with ISO 2092 and ISO 2107, respectively.

2 References

ISO 209-1, Wrought aluminium and aluminium alloys – Chemical composition and forms of products – Part 1: Chemical composition.¹⁾

ISO 2092, Light metals and their alloys – Code of designation based on chemical symbols. $^{2)}$

ISO 2107, Aluminium, magnesium and their alloys – Temper designations.

ISO 3134-3, Light metals and their alloys — Terms and definitions — Part 3: Wrought products. ISO 6361-1, Wrought aluminium and aluminium alloys sheets, strips and plates — Part 1: Technical conditions for inspection and delivery.

3 Definitions

For definitions of the terms *sheet*, *strip* and *plate*, see ISO 3134-3.

NOTE — In certain countries, for purposes of mechanical properties, the thickness limit may be lowered to 0,15 mm by agreement between the purchaser and the supplier, in the case of sheets and strips.

4 Tensile testing

For the selection of the specimens and tensile testing, see ISO 6361-1.

5 Mechanical properties

Values for mechanical properties of aluminium and aluminium alloys are given in tables 1 to 11. For elongation two different gauge lengths are used. The choice of the gauge length for elongation measurements A or A_{50mm} shall be at the discretion of the producer, unless otherwise agreed ³⁾.

Test results shall be rounded in accordance with the rules given in the annex.

1

1) At present at the stage of draft. (Partial revision of ISO/R 209 : 1971, ISO 2779 : 1973 and ISO 3335 : 1977.)

2) Under revision.

3) A: Percentage elongation on a gauge length of 5,65 $\sqrt{S_0}$.

A 50mm: percentage elongation on a gauge length of 50 mm.

5.1 Table 1 - AI 99,5 (1050 A)

Product	Temper	Thic	e e nm	Tensile strength	0,2 % proof stress	Elongation min.	
	over up to and R _m including N/mm ²	R _{p0,2} min. ²⁾ N/mm ²	A %	A _{50mm} %			
Sheet, strip	O H1D H2D HH	0,35 0,35 0,35 0,35 0,35	6,0 ¹⁾ 5,0 ¹⁾ 5,0 ¹⁾ 3,0	65 to 95 100 to 140 100 to 140 140 min.	20 80 75 120	35 6 8 4	See table 1a)
Plate	0	6,0	25	65 to 95	20	35	30

Table 1a) — Minimum elongation A_{50mm} , in per cent

Thick m	Thickness mm			•
over up to and including		0	Temper H1D	НН
0,35 0,8 1,3 2,6 3,0	0,8 1,3 2,6 3,0 6,0	22 25 30 32 32 32	4 5 6 6 8	3 3 4 4

5.2 Table 2 - Al 99,0 (1200)

Product	Temper	Thic	kness <i>e</i> nm	Tensile strength	0,2 % proof stress	Elon	gation nin.	
	over up to and R _m including N/mm ²	R _m N∕mm²	R _{p0,2} min. ²⁾ N/mm ²	A %	A A _{50mm} % %			
Sheet, strip	0 H1D H2D HH	0,35 0,35 0,35 0,35 0,35	6,0 ¹⁾ 5,0 ¹⁾ 5,0 ¹⁾ 3,0	75 to 105 110 to 150 110 to 150 150 min.	25 95 90 130	35 6 8 4	See table 2a)	

Table 2a) — Minimum elongation $A_{50\rm mm}$, in per cent

Thicl m		A _{50mm} min	•		
over	0	Temper O H1D HH			
0,35 0,60 1,20 3,0	0,60 1,20 3,0 6,0	17 22 30 30	2 3 5 5	1 2 4 —	

1) Maximum thickness of strips: 3 mm.

2) Minimum values guaranteed only on special agreement.

5.3 Table 3 - Ai 99,0Cu (1100)

Product	Temper	Thic	e e nm	Tensile strength	0,2 % proof stress	$\begin{array}{c c} 2 \ \% \ \text{proof} \\ \text{stress} \\ \hline \\ p_{0,2} \ \text{min}.^{2)} \\ N/\text{mm}^2 \\ \end{array} \begin{array}{c} A \\ \% \end{array}$	gation nin.
		over	up to and including	R _m N∕mm²	R _{p0,2} min. ²⁾ N/mm ²	A %	A _{50mm} %
Sheet, strip	O H1D HH	0,35 0,35 0,35	6,01) 5,01) 3,0	75 to 105 110 to 145 150 min.	25 95 130	35 6 3	See table 3a)

Table 3a) – Minimum elongation A_{50mm} , in per cent

Thic l m	Thickness mm			•
over	up to and including	o and Temper uding O H1D		
0,35 0,60 1,20 3,0	0,60 1,20 3,0 6,0	17 22 30 30	2 3 5 5	1 2 4

5.4 Table 4 - Al Mn1 (3103)

Product	Temper	Thic	kness e nm	Tensile strength	0,2 % proof stress	Elong	gation in.
roudet rompor	over	up to and including	R _m N/mm²	R _{p0,2} min. ²⁾ N/mm ²	A %	A _{50mm} %	
Sheet, strip	O H1D H2D HH	0,35 0,35 0,35 0,35 0,35	6,0 ¹⁾ 5,0 ¹⁾ 5,0 ¹⁾ 3,0	95 to 130 140 to 180 140 to 180 185 min.	35 115 110 165	28 5 8 3	-

¹⁾ Maximum thickness of strips: 3 mm.

²⁾ Minimum values guaranteed only on special agreement.

5.5 Table 5 - Al Mn1Cu (3003)

Product	Temper	Thic m	kness e nm	Tensile strength	0,2 % proof stress	Elon g m	Elongation min.		
		over	up to and including	R _m N/mm²	R _{p0,2} min. ²⁾ N/mm ²	A %	A _{50mm} %		
Sheet, strip	O H1D HH	0,35 0,35 0,35	6,0 ¹⁾ 5,0 ¹⁾ 3,0	95 to 130 140 to 180 180 min.	35 115 165	28 5 3	See table 5a)		

Table 5a)	_	Minimum	elongation	Asome	in	per	cen	t
-----------	---	---------	------------	-------	----	-----	-----	---

Thio	rkness nm		A _{50mm} min.	
over up to and including		0	Temper H1D	нн
0,35	0,60	20	2	1
0,60	1,20	22	3	2
1,20	3,0	25	5	4
3,0 6,0		25	5	_

5.6 Table 6 - Al Mg1(B) (5005)

Product	Product Temper Temper over up to and Rm N/mm ²	Thickness e mm		Tensile strength	0,2 % proof stress	Elon n	gation nin.
		R _{p0,2} min. ²⁾ N/mm ²	A %	Elongation min.AA 50mm %%%24See table 35table 6a)			
Sheet, strip	O H3D H3H	0,35 0,35 0,35	6,0 ¹⁾ 5,0 ¹⁾ 3,0	105 to 145 140 to 180 180 min.	35 105 165	24 5 3	See table 6a)

Table 6a) — Minimum elongation A_{50mm} , in per cent

Thic	r kness mm		$A_{\rm 50mm}$ min	÷	
over	up to and including	0	Temper O H3D H3		
0,35	0,60	16	3	2	
0,60	1,20	19	4	. 3	
1,20	1,20 3,0		5	4	
3,0	3,0 6,0		5	-	

1) Maximum thickness of strips: 3 mm.

2) Minimum values guaranteed only on special agreement.

4

5.7 Table 7 — AI Mg2,5 (5052)

Product	Temper	Thickness e mm		Tensile strength	0,2 % proof stress	Elongation min.	
	Temper	over	up to and including	R _m N∕mm²	R _{p0,2} min. N∕mm²	A %	A _{50mm} %
Sheet, strip	O H3D H3H	0,35 0,35 0,35	6,0 ¹⁾ 6,0 ¹⁾ 3,0	170 to 215 235 to 285 270 min.	65 180 220	20 5 3	See table 7a)
Plate	0	6,0	25	170 to 215	65	16	18

Table 7a) —	Minimum	elongation	AFOMM	in per	cent
-------------	---------	------------	-------	--------	------

Thic m	cness m	$A_{ m 50mm}$ min.				
over	over up to and including		Temper O H3D H3			
0,35 0,60 1,20	0,60 1,20 6,0	15 17 19	3 4 6	3 4 4		

5.8 Table 8 - Al Mg3 (5754)

Product	Temper	Thickness e mm		Tensile strength	0,2 % proof stress	Elongation min.	
		over	up to and including	R _m N/mm²	$R_{p0,2}$ min. N/mm ²	A %	A _{50mm} %
Sheet, strip	0 H3D H2D H3H	0,35 0,35 0,35 0,35 0,35	6,0 ¹⁾ 5,0 ¹⁾ 5,0 ¹⁾ 3,0	190 to 240 240 to 280 240 to 280 290 min.	80 190 160 250	20 5 10 3	

5.9 Table 9 - Al Mg3Mn (5454)

Product	Temper	Thickness e mm		Tensile strength	0,2 % proof stress	Elongation min.	
		over	up to and including	R _m N∕mm²	$R_{p0,2}$ min. N/mm ²	A %	A _{50mm} %
Sheet, strip	O	1,6	6,0 ¹⁾	215 to 285	85	16	16
	M	3,0	6,0 ¹⁾	215 min.	100	16	—
Plate	O	6,0	25	215 to 285	85	16	18
	M	6,0	25	215 min.	100	16	14

5

5.	10	Table	10 -	– AI	Mg4,5Mn0,7	(5083)
----	----	-------	------	------	------------	--------

Product	Temper	Thickness e mm		Tensile strength	0,2 % proof stress	Elongation min.	
	Temper	over	up to and including	R _m N/mm²	R _{p0,2} N/mm²	A %	A _{50mm} %
Sheet, strip	O H3B H3D	1,20 1,20 1,20	6,0 ¹⁾ 6,0 ¹⁾ 6,0 ¹⁾	275 to 350 310 to 380 345 to 405	125 to 200 ²⁾ 235 to 305 ²⁾ 270 to 340 ²⁾	17 10 6	See
Plate	O M M	6,0 6,0 12,5	50 12,5 25	270 to 345 275 min. 275 min.	115 to 200 ²⁾ 125 min. 125 min.	14 12 10	table 10a)

Table 10a) — Minimum elongation $A_{50\rm mm}$, in per cent

TI	mickness mm	A _{50mm} min.					
over	over up to and including		Ter O	nper H3B	H3D		
1,2	3,0		16	8	6		
3,0	6,0		16	10	8		
6,0	12,5	12	16	<u> </u>			

5.11 Table 11 – Al Si1MgMn (6082)

Product	Product Temper		Thickness e mm		0,2 % proof stress	Elongation min.	
	Tompor	over	up to and including	R _m min. N∕mm²	R _{p0,2} min. N/mm ²	A %	A _{50mm} %
Sheet, plate	TF	0,35	10	310	260	10	8

1) Maximum thickness of strips: 3 mm.

2) Minimum values guaranteed only on special agreement.

6

Annex

Rules for rounding

(This annex forms an integral part of the Standard.)

A.1 Rounding of results obtained by inspection and testing

A.1.1 Mechanical and chemical properties

The results of mechanical and chemical tests shall be rounded using either the rules specified in the International Standard specifying the method of test or, if the value obtained contains a larger number of significant figures than the guaranteed value, the generally accepted rules for rounding.

A.1.2 Dimensional characteristics

The results of determinations of dimensions (length, width, thickness, rounding, etc.) and shape (squaring, cambering, straightness, flatness, kinking, circularity, etc.) are not rounded. These shall comply with the specification in the relevant International Standard, taking into account permissible tolerances also given in that International Standard.

A.2 Rounding for determination of compliance

In recording test results, the number representing the result of a test to determine a given property or to determine chemical composition should be expressed to the same number of decimal places as the corresponding number in the relevant International Standard.

The following rules should be used for rounding:

a) When the figure immediately after the last figure to be retained is less than 5, the last figure to be retained remains unchanged.

b) When the figure immediately after the last figure to be retained is greater than 5, or equal to 5 and followed by at least one figure other than zero, the last figure to be retained is increased by one.

c) When the figure immediately after the last figure to be retained is equal to 5 and followed by zeros only, the last figure to be retained remains unchanged if even and is increased by one if odd.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6361-2:1987</u>

1ttps://standards.iteh.ai/catalog/standards/sist/8500223f-0e65-4b5b-b857-baf39404cf20/iso-6361-2-1987