INTERNATIONAL STANDARD

ISO 6402-1

> First edition 1990-10-15

Plastics — Impact-resistant acrylonitrile/styrene moulding and extrusion materials (ASA, AES, ACS), excluding butadiene-modified materials —

iTeh SPARTIDARD PREVIEW Designation (standards.iteh.ai)

https://standards.plastiques/s

Partie 1: Désignation

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

iTeh STANDARD PREVIE

International Standard ISO 6402-1 was prepared by Technical Committee ISO/TC 61, Plastics. (Standards.iteh.ai)

ISO 6402 will consist of the following parts, under the general title *Plastics — Impact-resistant acrylonitrile/styrene moulding and extrusion materials* (ASA, AES, ACS), excluding butadiene modified materials: 16684-c263-40e7-8247-dbc6ae8c2b6e/iso-6402-1-1990

- Part 1: Designation
- Part 2: Preparation of test specimens and determination of properties

© ISO 1990

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 ● CH-1211 Genève 20 ● Switzerland

Printed in Switzerland

Plastics — Impact-resistant acrylonitrile/styrene moulding and extrusion materials (ASA, AES, ACS), excluding butadiene-modified materials -

Part 1:

Designation

Scope

- ethylene-propylene-diene (EPDM) (AES materials);
- 1.1 This part of ISO 6402 establishes a system of (or substituted styrene) thermoplastic materials, exbutadiene-modified materials Iso(form) example ABS), which may be used as the basis for specifications.
- 1.2 The types of impact-resistant acrylonitrile/ styrene plastic are differentiated from each other by a classification system based on appropriate levels of the designatory properties
- a) Vicat softening temperature,
- b) melt flow rate,
- c) impact strength and
- d) flexural modulus,

and on information about intended application, method of processing, important properties, additives, colour and fillers.

- 1.3 This designation system is applicable to all impact-resistant acrylonitrile/styrene thermoplastic materials, excluding butadiene-modified materials, having as impact modifier a dispersed elastomeric phase, free of double bonds of the butadiene type, based on
- acrylic ester (ASA materials);

chlorinated polyethylene (ACS materials). designation for impact-resistant acrylonitrile/styrened S. It applies to materials ready for normal use in the form of powder, granules or pellets, unmodified and

> This part of ISO 6402 does not apply to materials dbc6ae8c2b6e/iso-640

modified by colorants, additives, fillers, etc.

- a) containing less than 10 % (m/m) acrylonitrile in the continuous phase;
- b) with an Izod impact strength less than 3 kJ/m²;
- c) containing more than 5% (m/m) of another comonomer or polymer in the continuous phase.
- 1.4 It is not intended to imply that materials having the same designation give necessarily the same performance. This part of ISO 6402 does not provide engineering data, performance data or data on processing conditions which may be required to specify a material for a particular application or method of processing.

If such additional properties are required, they shall, until an International Standard is available, be determined by test methods agreed on by the parties concerned.

- Test methods of this kind will be specified in ISO 6402-2, which is in preparation.
- 1.5 In order to specify a thermoplastic material for a particular application, additional requirements may be specified in Data Block 5 (see clause 3).

Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 6402. At the time of publication. the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 6402 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 178:1975. Plastics — Determination of flexural properties of rigid plastics.

ISO 180:1982, Plastics - Determination of Izod impact strength of rigid materials.

ISO 293:1986, Plastics - Compression moulding test specimens of thermoplastic materials.

ISO 306:1987, Plastics — Thermoplastic materials — Determination of Vicat softening temperature.

ISO 1043-1:1987, Plastics — Symbols — Part 1: Basic polymers and their special characteristics Standards pata Blockly Fillers or reinforcing materials and

ISO 1043-2:1988, Plastics - Symbols - Part 2: Fillers 6402-1:1990 and reinforcing materials.

flow rate of thermoplastics.

ISO 1656:1988. Rubber, raw natural, and rubber latex. natural — Determination of nitrogen content.

ISO 2557-1:1989. Plastics — Amorphous thermoplastics - Preparation of test specimens with a specified maximum reversion — Part 1: Bars.

ISO 4607:1978. Plastics - Methods of exposure to natural weathering.

ISO 8328:1989, Plastics — Amorphous thermoplastic moulding materials - Determination of maximum reversion.

Designation system

The designation system for thermoplastics is based on the standardized pattern given in figure 1.

The designation consists of an optional Description Block, reading Thermoplastics, and an Identity Block comprising the International Standard number and an Individual Item Block. For unambiguous designation, the Individual Item Block is subdivided into 4 data blocks comprising the following information:

Data Block 1: Identification of the plastic by its symbol (ASA, AES, ACS) and information about the composition of the copolymer (see 3.1).

Data Block 2: Position 1: Intended application or method of processing (see 3.2).

> Positions 2 to 4: Important properties, additives and supplementary information (see 3.2).

Data Block 3: Designatory properties (see 3.3).

the nominal content thereof (see

3.4).

the subject of this part of ISO 6402.

https://standards.iteh.ai/catalog/standardorithe2purpose6of1specifications, a fifth data block ISO 1133:1981, Plastics — Determination of the melt 2b6e/ismay be added containing additional information. The kind of information and the code-letters used are not

> The first character of the Individual Item Block shall be a hyphen.

> The four data blocks shall be separated from each other by a comma.

> If a data block is not used, this shall be indicated by doubling the separation sign, i.e. commas (,,).

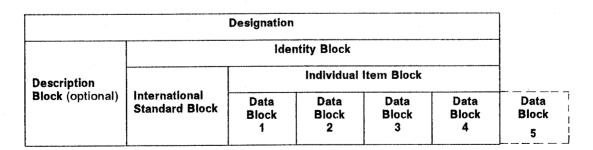


Figure 1 — Data block designation system

Data Block 1

In this data block, after the hyphen, the plastic is identified by its symbol (ASA, AES, ACS) (see 1.3) in accordance with ISO 1043-1 and, after a space, the acrylonitrile content of the continuous phase is designated by a single-figure code-number, as specified in table 1.

Table 1 — Codes used for acrylonitrile content in Data Block 1

Code	Range of AN content % (m/m)
1	> 10 to ≤ 30
2	> 30

For the purposes of this part of ISO 6402, the AN content of the continuous phase shall be determined by the Kjeldahl method, as specified in ISO 1656, or, alternatively, by a pyrolysis/thermal conductivity method.

3.2 Data Block 2

In this data block, information about the intended s.it application or method of processing is given in position 1 and information about important properties 2-1:1933.3.1 Vicat softening temperature additives and colour in positions 2 to 4. The code ards/sist/f letters used are specified in table 2.

If information is presented in positions 2 to 4 and no specific information is given in position 1, the letter X shall be inserted in position 1.

Data Block 3

In this data block, the Vicat softening temperature is represented by a three-figure code-number (see 3.3.1), the melt flow rate by a two-figure codenumber (see 3.3.2), the impact strength by a twofigure code-number (see 3.3.3) and the flexural modulus by a two-figure code-number (see 3.3.4). The four codes are separated from each other by hyphens.

If a property value falls on or near a range limit, the manufacturer shall state which range will designate the material. If subsequent individual test values lie on, or either side of, the range limit because of manufacturing tolerances, the designation is not affected.

NOTE 2 Not all combinations of the values of the designatory properties are provided by currently available materials.

Table 2 — Code-letters used in Data Block 2

the hyphen, the plastic is ASA, AES, ACS) (see 1.3) in 43-1 and, after a space, the	Code- letter	Position 1	Positions 2 to 4
ne continuous phase is des- e code-number, as specified	Α		Processing stabilized
o code nambor, as specimed	В		Antiblocking
	C		Coloured
for acrylonitrile content in	D		Powder; dry blend
Block 1	E	Extrusion of pipes, profiles and sheet	
ange of AN content % (m/m)	F	Extrusion of film	Special burning characteristics
> 10 to ≤ 30	G	General use	Pellets; granules
> 30	Н		Heat-ageing stabi- lized
part of ISO 6402, the AN phase shall be determined	L		Light and/or weather stabilized
as specified in ISO 1656, or,	м	Injection moulding	d and a second
olysis/thermal conductivity	N		Natural (not col- oured)
	R		Moulding release agent
iTeh STANDARD	PRI	No indication	Lubricated
mation about the intendeds.i	teľ.a	1)	Antistatic

dbc6ae8c2b6e/iso-6402The Vicat softening temperature (VST) shall be determined in accordance with ISO 306, method B, with test specimens moulded from dry material, using a test load of 50 N \pm 1 N and a heating rate of $50~^{\circ}\text{C/h} \pm 5~^{\circ}\text{C/h}$. The possible values of the VST are divided into four ranges, each represented by a three-figure code-number, as specified in table 3.

Table 3 — Codes used for Vicat softening temperature in Data Block 3

Code	VST range °C	
085	€ 90	
095	> 90 to ≤ 100	
105	> 100 to ≤ 110	
115	> 110	

3.3.2 Melt flow rate

The melt flow rate (MFR) shall be determined in accordance with ISO 1133, using set of test conditions No. 19 (temperature 220 °C, load 10 kg). The material for the determination of the melt flow rate shall be conditioned for 4 h at 80 °C, or in accordance with the manufacturer's recommendations, and then stored in a desiccator at 23 °C \pm 2 °C until tested.

The possible values of the MFR are divided into four ranges, each represented by a two-figure codenumber, as specified in table 4.

Table 4 — Codes used for melt flow rate in Data Block 3

Code	MFR range g/10 min
04	≤ 5
08	> 5 to ≤ 10
15	> 10 to ≤ 20
25	> 20

3.3.3 Izod impact strength

The Izod impact strength shall be determined with test specimens in the basic state (see ISO 2557-1), having a maximum reversion \mathcal{S}_{m} , measured in accordance with ISO 8328, of < 5 %. The test specimens shall be prepared either by compression moulding, in accordance with ISO 293, or, alternatively, by thermal relaxation of injection-moulded test specimens, as specified in ISO 2557-1.

The impact strength shall be determined by method 4A of ISO 180.

ided into five ranges, each represented by a twofigure code-number, as specified in table 5.

Table 5 — Codes used for Izod impact strength in Data Block 3

Izod impact strength	
Range kJ/m²	
> 3 to ≤ 6	
> 6 to ≤ 12	
> 12 to ≤ 20	
$> 20 \text{ to} \le 30$	
> 30	
	Range kJ/m ² > 3 to ≤ 6 > 6 to ≤ 12 > 12 to ≤ 20 > 20 to ≤ 30

3.3.4 Flexural modulus

The flexural modulus shall be determined in accordance with ISO 178 with 80 mm \times 10 mm \times 4 mm test specimens in the basic state, prepared as specified in 3.3.3. The possible values of the flexural modulus are divided into four ranges, each represented by a two-figure code-number, as specified in table 6.

Table 6 — Codes used for flexural modulus in Data Block 3

Code	Flexural modulus range MPa
15	≤ 1800
20	> 1800 to ≤ 2300
25	$> 2300 \text{ to} \le 2800$
30	> 2800

3.4 Data Block 4

In this data block, the type of filler or reinforcing material is represented by one code-letter in position 1 and its physical form by a second letter in position 2 (see table 7 and ISO 1043-2), if requested. Subsequently (without a space), the mass content may be represented by a two-figure code-number in positions 3 and 4, as specified in table 8.

Mixtures of materials or forms may be indicated in parentheses by combining the relevant codes using the sign "+"; for example a mixture of 25 % (m/m)glass fibres (GF) and 10 % (m/m) mineral powder (MD) would be indicated by (G+M) in position 1. (F+D) in position 2 and (25+10) in positions 3 and 4.

The possible values of the impact strength are div-/standards/sist/f3216684-c26fatf0t7-6247-Rlock 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Material (Position 1)	Form (Position 2)	
Boron	Balls; beads; spheres	
Carbon ¹⁾		
	Powder; dry blend	
	Fibre	
Glass	Granules; ground	
	Whiskers	
Chalk (CaCO ₃)		
Mineral ¹⁾ ; metal ²⁾		
	Scale, flake	
Talcum	•	
Not specified	Not specified	
Others ¹⁾	Others	
	Material (Position 1) Boron Carbon ¹) Glass Chalk (CaCO ₃) Mineral ¹); metal ²) Talcum Not specified	

- 1) These materials may be defined by two letters after position 4 of the data block, for example by chemical symbol, additional codes or codes to be agreed
- 2) Metal filler shall be identified by the chemical symbol (in capital letters) after the mass content. For example steel whiskers may be designated "MH05FE".

Table 8 — Coding system for the mass content in Data Block 4

Code	Mass content % (m/m) (Positions 3 and 4)
05	≤ 7,5
10	$> 7.5 \text{ to } \le 12.5$
15	> 12,5 to ≤ 17,5
20	$> 17.5 \text{ to} \le 22.5$
25	$> 22,5 \text{ to } \le 27,5$
30	$> 27.5 \text{ to} \le 32.5$
35	$> 32.5 \text{ to} \le 37.5$
40	$> 37,5 \text{ to} \leq 42,5$

4 Example of designation

An impact-resistant acrylonitrile/styrene moulding and extrusion material with an acrylic ester impact modifier, having an AN content of 23 % (m/m) (1), intended for injection moulding (M), coloured (C), and having a Vicat softening temperature of 97 °C (095), a melt flow rate of 7 g/10 min (08), an Izod impact strength of 11 kJ/m² (09) and a flexural modulus of 2 600 MPa (25), would be designated:

ISO 6402-1:1990 https://standards.iteh.av.catalog/standards/sisv13210084-c263-40e7-8247-dbc6ae8c2b6e/iso-6402-1-1990 ISO 6402-1:1990(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6402-1:1990 https://standards.iteh.ai/catalog/standards/sist/f3216684-c263-40e7-8247-dbc6ae8c2b6e/iso-6402-1-1990

UDC 678.745.32-134.622.001.33

Descriptors: plastics, acrylonitriles, styrene, moulding materials, extrusions, designation.

Price based on 5 pages