Refrigerated hydrocarbon liquids - Static measurement - Calculation procedure

Hydrocarbures liquides réfrigérés - Mesurage statique - Procédure de calcul iTeh STANDARI PREVIEW (standards.iteh.ai)

ISO 6578:1991
https://standards.iteh.ai/catalog/standards/sist/e6de9530-a63e-47b0-8291-
f6ffo06ea141/iso-6578-1991

Contents

Page
1 Scope 1
2 Normative references 1
3 Definitions and symbols 1
4 Volume of LPG at standard temperature 3
5 Mass 3
6 Energy content (calorific content) 5
7 Inter-conversion of liquid mass and vapour volume at standardconditionsTTëh STANIDARD PRÉVIIEW
8 Calculation of liquid density from composition
(standà ards.is.itelh.aí)
9 Calculation of calorific value from composition
ISO 6578:1991
Annexes https $\mathrm{J} / \mathrm{standards.iteh.ai/catalog/standards/sist/e6de9530-a63e-47b0-8291-}$A Constants for density calculationf6ffo06ea141/iso-6578-1991 10
B Orthobaric molar volumes of individual components of LNG 11
C Correction factors for volume reduction of LNG mixtures 12
D Gross calorific values for individual components 14
E Relative molecular masses and compressibility factors of individual components 15
F Chemical names corresponding to the chemical formulae used in this International Standard 16
G Alternative equation for calculating the molar volume and saturated density of LPG mixtures 17
H Critical temperature, acentric factor and characteristic volume of individual components used in equations 20
(C) ISO 1991All rights reserved. No part of this publication may be reproduced or utilized in any form or by anymeans, electronic or mechanical, including photocopying and microfilm, without permission inwriting from the publisher.
International Organization for Standardization
Case postale 56 - CH-1211 Genève 20 - Switzerland
Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.
iTeh SPetroleum products and lubricants. $\begin{aligned} & \text { International } \text { Standar by Technical Committee ISO/TC 28, }\end{aligned}$
(Annexes A to H form an integral part of this International Standard.
ISO 6578:1991
https $/ / /$ standards.iteh.ai/catalog/standards/sist/e6de9530-a63e-47b0-8291-
f6ff006ea141/iso-6578-1991

Introduction

Storage and transport of large quantities of refrigerated hydrocarbon liquids [e.g. liquefied natural gases (LNG) and liquefied petroleum gases (LPG)] is now common practice. Existing standards for the measurement of petroleum products are either not applicable to, or in some cases inadequate for, these products at low temperatures and, for these products, such standards shall be replaced or modified by the procedures in this International Standard.

Accurate measurement is essential in the sale, purchase and handling of refrigerated hydrocarbon liquids. Custody transfer agreements call for the standardization of static measurement procedures, and it is recommended that quantities be expressed in mass or energy units. It is recognized that other units are currently used for LPG transfers, but these are not covered in this International Standard.

Although the principles of calculating the quantity of a static refrigerated hydrocarbon liquid are basically similar to those for petroleum liquids at ambient temperatures, there are differences caused by the low temperature and the physical properties of refrigerated hydrocarbons. These include the following:
a) The liquid product is at or near a temperature at which bubbles of vapour are first formed within the liquid (bubble point). In a tank containing refrigerated liquid there will always be a small inward flow of heat through the insulation, which will cause a continuous vaporization of the product. The vapour will contain a higher concentration of more volatile constituents than the liquid. To avoid over-pressure, this vapour is vented from the tank and can be compressed, cooled and re-liquefied for re-introduction into the tank.
b) When a liquid product is transferred from one tank to another, additional heat HE inflow will occur in the pipeline and also from work done by the pump, causinge additional evaporation in the receiving tank. (Stalnallas.Cll.al)
c) For custody transfers from a supply to a receiving tank, it is normal practice to provide a vapour return line linking the tanks to avoid displacement of vapour to the atmosphere. Build-up of pressure in the interlinked system is avoided by reliquefaction. f6f1006eal41/iso-6578-1991
d) After a partial filling, stratification into different temperature and density layers may occur in the liquid contents of a tank. Therefore, a number of temperature measuring points and a special sampling system may be necessary. If the filling operation is such as to ensure mixing, these needs may be reduced.
e) There is considerable evidence that large temperature gradients exist in the vapour space of any tank containing a refrigerated hydrocarbon liquid. These gradients may not be linear. Suitable compensation (physical or by calculation) must be made if the reading of the level-measuring device is affected by differential contraction of the level-sensor suspension.
f) Refrigerated hydrocarbon liquids have large temperature coefficients of volumetric expansion and approximate values are given below:

$$
\begin{array}{ll}
- & \text { propane } \\
- & 0,20 \% /{ }^{\circ} \mathrm{C} \\
\text { methane } & 0,35 \% /{ }^{\circ} \mathrm{C} .
\end{array}
$$

It is very strongly emphasised that errors in temperature measurement can account for the major part of the error in quantitative measurement and the greatest care is therefore needed in the selection and use of temperature measuring equipment.

This International Standard is applicable to the measurement of refrigerated liquids contained in land storage tanks and in ships' tanks when the liquids are fully refrigerated at a vapour pressure near to atmospheric pressure.

However, it is not intended that this International Standard be applied retroactively to existing business contracts, nor should it be applied if it is in conflict with government regulations.

No recommendations are given for the measurement of small parcels of refrigerated liquids, which are directly weighed.

Calculation procedures for refrigerated hydrocarbon liquids consisting predominantly of ethane or ethylene, or for partially refrigerated hydrocarbon liquids at pressures substantially above atmospheric, are not included. Consideration should be given to their inclusion in a subsequent revision, as and when more reliable data become available.

In order to implement the detailed recommendations given in this International Standard, it is essential that personnel responsible for the measurement procedures have the necessary experience and skill. At all times, scrupulous attention must be given to detail.

NOTE - Use of units:
a) Temperature - Celsius temperature is used in connection with the measurement and transport of refrigerated gases and has been used in general in this International Standard; however, in some calculations the thermodynamic, i.e. kelvin, temperature scale must be used. For accurate conversion, $273,15 \mathrm{~K} \equiv 0^{\circ} \mathrm{C}$ - should be used, but in the examples given here $273 \mathrm{~K} \equiv 0^{\circ} \mathrm{C}$ is sufficiently accurate.
b) Pressure - The pascal (Pa) is used as the unit of pressure in this standard, but the bar is given as an alternative unit. The bar may be substituted in calculations; the conversion $1 \mathrm{bar}=100 \mathrm{kPa}$ should be used.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6578:1991
https $\mathrm{f} / /$ standards.iteh.ai/catalog/standards/sist/e6de9530-a63e-47b0-8291-f6flo06ea141/iso-6578-1991

iTeh STANDARD PREVIEW (standards.iiteh.ail)

 This page intentionally left blank

 This page intentionally left blank}

ISO 6578:1991
https://standards.iteh.ai/catalog/standards/sist/e6de9530-a63e-47b0-8291-f6ff006ea141/iso-6578-1991

Refrigerated hydrocarbon liquids - Static measurement Calculation procedure

1 Scope

1.1 This International Standard specifies the calculations to be made to adjust the volume of a refrigerated hydrocarbon liquid, such as LPG or LNG, from the conditions at measurement to the equivalent volume of liquid or vapour at a standard temperature and pressure, or to the equivalent mass or energy (calorific content). It applies to quantities of refrigerated hydrocarbon liquids stored in or transferred to or from tanks and measured under static storage conditions by tank gauges.
1.4 If, for quantity calculations, the product density or the calorific value is required, this shall be either determined directly or calculated from the product composition analysis. The procedures for these subsidiary calculations are given in clauses 8 and 9 .
1.5 The mandatory basic data and source references used in the calculation procedures are given in annexes A to F.
1.2 Using these procedures, the finall quantity shall be ex-RD2 Normátive references pressed in terms of the following:
a) mass (see the note);
(standards.i
The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated
b) energy (calorific content);
c) equivalent volume of vappour under standard cond ditions.

NOTE - The current practice for measurement of LPG is by apparent mass in air.

The factors in table 1 may be used to convert mass into apparent mass in air.

Table 1

Density at $15{ }^{\circ} \mathrm{C}$ $\mathrm{kg} / \mathrm{m}^{3}$	Factor
500,0 to 519,1	0,99775
519,2 to 542,1	0,99785
542,2 to 567,3	0,99795
567,4 to 595,0	0,99805
595,1 to 625,5	0,99815
625,6 to 659,3	0,99825

1.3 If it is required to express the volume of liquid at a standard temperature, the procedures and correlations to determine such quantities are given in clause 4. The standard reference temperature for petroleum products is $15^{\circ} \mathrm{C}$ (see ISO 5024), but references are made to calculations involving other widely used reference temperatures, i.e. $20^{\circ} \mathrm{C}$. were valid. All standards are subject to revision, and parties to agreements based on thisinternational Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 91-1: 1982, Petroleum measurement tables - Part 1: Tables based on reference temperatures of $15^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{F}$.

ISO 91-2 : 1991, Petroleum measurement tables - Part 2: Tables based on reference temperatures of $20^{\circ} \mathrm{C}$.

ISO 3993 : 1984, Liquefied petroleum gas and light hydrocarbons - Determination of density or relative density Pressure hydrometer method.

ISO 5024: 1976, Petroleum liquids and gases - Measurement - Standard reference conditions.

3 Definitions and symbols

3.1 Definitions

For the purposes of this International Standard, the following definitions shall apply. Definitions are given for those terms which have particular relevance in calculation procedures used for refrigerated hydrocarbon liquids. ${ }^{1)}$

[^0]3.1.1 refrigerated hydrocarbon liquids: Liquids composed predominantly of hydrocarbons, which are stored in a fully refrigerated condition at pressures near atmospheric.
3.1.2 liquefied natural gases (LNG): Liquids composed predominantly of methane.
3.1.3 liquefied petroleum gases (LPG): Liquids composed predominantly of any of the following hydrocarbons or mixtures thereof: propane, propene, butanes and butene.
3.1.4 gross calorific value (specific energy) on mass basis: The number of heat units generated when unit mass of a product in the vapour phase at standard temperature and pressure is burned completely in dry air. The gaseous products of combustion are brought to the same standard conditions of temperature and pressure but the water produced is condensed to liquid in equilibrium with water vapour.
3.1.5 gross calorific value (specific energy) on volume basis: The number of heat units generated when unit volume of a product in the vapour phase at standard temperature and pressure is burned completely in dry air. The gaseous products of combustion are brought to the same standard conditions of temperature and pressure but the water produced is condensed to liquid in equilibrium with water vapour
$H_{\mathrm{s}, V, i}$ is the gross (superior) calorific value on a volume basis (ideal), in megajoules per cubic metre, of component i (see annex D);
$H_{\mathrm{s}, \mathrm{vol}}$ is the gross (superior) calorific value on a volume basis, in megajoules per cubic metre, of the vapour at the appropriate standard temperature and pressure;
m is the mass, in kilograms, of product transferred, i.e. liquid plus vapour;
$m_{\text {liq }}$ is the mass, in kilograms, of liquid;
M_{i} is the molecular mass, in kilograms per kilomole, of component i (see annexes E and G);
$M_{\text {mix }}$ is the relative molecular mass, in kilograms per kilomole, of the vapour mixture ;
P_{s} is the standard reference pressure, i.e. $101,325 \mathrm{kPa}$ (1,013 25 bar) ;
$P_{\text {vap }}$ is the pressure, in kilopascals (bars), of the vapour in the container;
Q is the net energy, in megajoules, transferred, based on gross calorific value
3.1.6 orthobaric density: The mass of the liquid occupying unit volume at a given temperature, the liquid being in equilibrium with its vapour.

SO 6578:199.
t is the temperature, in degrees Celsius, of the liquid;
3.1.7 densitometer: An instrument for measuring density. ${ }^{-157} T_{\mathrm{s}}$ is the standard reference temperature, i.e. $288,15 \mathrm{~K}$
3.1.8 volume basis (ideal): A volume calculated on the basis that the vapour behaves like an ideal gas.
3.1.9 volume basis (real): Volume calculated on the basis that the vapour behaves like a super-compressible gas.
3.1.10 compressibility factor: The ratio of the real volume of a given mass of gas at a specified temperature and pressure to its volume under the same conditions calculated from the ideal gas law.

3.2 Symbols

The following symbols are defined here for use in this International Standard, but additionally some symbols are given a more restricted meaning when used in some equations. The restricted meaning is then given after the equations.
$H_{\mathrm{s}, m, i}$ is the gross (superior) calorific value on a mass basis, in megajoules per kilogram, of component i (see annex D);
$H_{\mathrm{s}, m}$ is the gross (superior) calorific value on a mass basis, in megajoules per kilogram, of the liquid;
(15 ${ }^{\circ} \mathrm{C}$);
$T_{\text {vap }}$ is the temperature, in kelvins, of the vapour in the container ;
V_{i} is the molar volume, in cubic metres per kilomole, of component i, as a liquid at temperature $t^{\circ} \mathrm{C}$;
$V_{\text {liq }}$ is the volume, in cubic metres, of the liquid at temperature t;
V_{m} is the ideal gaseous molar volume, in cubic metres per kilomole, at standard conditions of pressure and temperature
i.e. $22,4138 \mathrm{~m}^{3} / \mathrm{kmol}$ at P_{s} and $273,15 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$;
$23,6447 \mathrm{~m}^{3} / \mathrm{kmol}$ at P_{s} and T_{s};
$V_{\text {vap }}$ is the vapour volume, in cubic metres, in the container;
$x_{i} ; x_{j}$ are the mole fractions of the components i and j, respectively;
x_{1} is the mole fraction of methane in the LNG;
x_{2} is the mole fraction of nitrogen in the LNG;
Z_{i} is the compressibility factor for component i at the required pressure and temperature;
$Z_{\text {mix }}$ is the compressibility factor for the vapour mixture under known conditions of temperature and pressure;
ϱ_{t} is the density, in kilograms per cubic metre, of the liquid at temperature t.

Additional subscripts: F and I indicate, respectively, the final and initial measurements or product properties in either of the two containers used for a transfer.

NOTE - Other units may be used for the calculations in this International Standard, provided that they are dimensionally consistent, but vapour temperature and pressure should be expressed in absolute units.

4 Volume of LPG at standard temperature

The procedure for converting the volume of refrigerated LPG to its equivalent volume at a standard temperature and corresponding equilibrium pressure includes the following aspects:

iTeh STANDARD

a) Very large factors may have to be applied for the correction of observed density to density at standard temperature, e.g. a correction for the effect of a temperature difference of $60^{\circ} \mathrm{C}$ may be necessary for refrigerated propane. Provided that the LPG does not contain more than 20 \% of un-78:1991 saturated hydrocarbons the correction tables/ referred to in ISO 91 shall be used for volume corrections. However, the tables for this density range are those retained from the 1952 edition of the API-ASTM-IP Petroleum Measurement Tables (see sub-clause 3.4 of ISO 91-1: 1982). If the LPG contains 20% or more of unsaturated hydrocarbons, the density shall be calculated using the method given in clause 8.
b) The equivalent liquid content in the vapour space of a container holding refrigerated LPG is significantly less than if the tank and contents are at ambient temperature. Therefore, any error in accounting for the equivalent liquid content in the vapour space will be of lesser significance.

NOTES

1 The following examples illustrate the magnitude of errors that can be introduced by using the tables referred to in ISO 91.
a) Pure butene or propene: the maximum error will be approximately 2% for a correction from $-60^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$;
b) Mixtures containing approximately 20% of unsaturated hydrocarbons: a typical error will be approximately $0,1 \%$ for a temperature difference of $20^{\circ} \mathrm{C}$.

2 A condition in which a liquid has a vapour pressure significantly higher than atmospheric pressure at a standard temperature of $15^{\circ} \mathrm{C}$ (or $20^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{F}$) can only be considered as a pseudo-condition, and the volume of the liquid in this condition may be used only when convenient in a procedure for obtaining the density at refrigerated temperatures by means of pressure hydrometer measurement at ambient conditions (see ISO 3993).

5 Mass

5.1 Mass of liquid phase

5.1.1 Calculate the mass of liquid ($m_{\text {liq }}$), in kilograms, using the equation

$$
\begin{equation*}
m_{\text {liq }}=V_{\text {liq }} \varrho \tag{1}
\end{equation*}
$$

where $V_{\text {liq }}$ and ϱ are for the same value of the temperature t.

EXAMPLE

```
Measured volume of liquid LNG in a container \(=45550 \mathrm{~m}^{3}\)
        at a temperature of \(-163,5^{\circ} \mathrm{C}\).
Calculated density at \(-163,5^{\circ} \mathrm{C}=468,3 \mathrm{~kg} / \mathrm{m}^{3}\)
Mass of LNG \(\left(m_{\text {lia }}\right)=45550 \times 468,3 \mathrm{~kg}\)
    \(=21,33 \times 10^{6} \mathrm{~kg}\) or \(21,33 \times 10^{3} \mathrm{t}\)
```

5.1.2 The density at a specified temperature shall be measured using either a pressure hydrometer (LPG) or a suitable densitometer, or shall be calculated from a composition analysis (see clause 8)
5.1.3 If the actual temperature t_{2} at which the density is measured does not differ by more than $5^{\circ} \mathrm{C}$ from the temperature t_{1} of the main bulk of liquid in the container, then the observed density may be corrected to the required bulk temperature by means of the equation

$$
\begin{equation*}
\varrho_{t, 1}=\varrho_{t, 2}+F\left(t_{2}-t_{1}\right) \tag{2}
\end{equation*}
$$

where

$\varrho_{t, 1}$ and $\varrho_{t, 2}$ are the densities at temperatures t_{1} and t_{2} respectively;
F is the density correction factor applicable to the particular liquid. The units of F shall be compatible with the units of ϱ, e.g. when ϱ is expressed in kilograms per cubic metre, F is expressed in $\mathrm{kg} /\left(\mathrm{m}^{3}{ }^{\circ} \mathrm{C}\right)$.

Product	F $\mathrm{~kg} /\left(\mathrm{m}^{3} \cdot{ }^{\circ} \mathrm{C}\right)$
LNG [$>80 \%(\mathrm{~m} / \mathrm{m})$ methane]	1,4
Liquid propanes $[>60 \%(\mathrm{~m} / \mathrm{m})$ propane $]$	1,2
Liquid butanes $[>60 \%(\mathrm{~m} / \mathrm{m})$ butane $]$	1,1

EXAMPLE

The density of the LNG is $464,8 \mathrm{~kg} / \mathrm{m}^{3}$ at $t_{2}=-161,0^{\circ} \mathrm{C}$. What is the density of the LNG at $-163,5^{\circ} \mathrm{C}$?

Substituting into equation (2) gives

$$
\begin{aligned}
\varrho_{t, 1} & =464,8+1,4[-161,0-(-163,5)] \\
& =464,8+3,5 \\
& =468,3 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

5.1.4 The density of refrigerated LPG may be determined at the standard temperature of $15^{\circ} \mathrm{C}$ (or $20^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{F}$) by use of the pressure hydrometer method (see ISO 3993).

The liquid sample drawn into a suitable container is allowed to approach ambient temperature under pressure, without loss of vapour, before it is introduced into the hydrometer cylinder.

5.2 Correction for vapour phase

5.2.1 When a quantity of refrigerated hydrocarbon liquid is transferred, it will be necessary to make a correction for the mass of vapour occupying the volume into which, or from which, the liquid is transferred.

Assuming that all measurements have been made under liquid equibrium conditions, the following equation can be applied to measurements made in either the delivery or the receiving container.

Mass transferred $=$ Final mass - Initial mass

$$
\begin{align*}
\therefore m= & {\left[V_{\text {liq, }, \mathrm{F}} \varrho_{\mathrm{F}}+V_{\text {vap }, \mathrm{F}} \times \frac{T_{\mathrm{s}}}{T_{\text {vap }, \mathrm{F}}} \times \frac{P_{\text {vap }, \mathrm{F}}}{P_{\mathrm{s}}} \times \frac{M_{\text {mix }, \mathrm{F}}}{V_{\mathrm{m}} Z_{\text {mix }, \mathrm{F}}}\right]-} \\
& -\left[V_{\text {liq,I }} \varrho_{\mathrm{I}}+V_{\text {vap, } \mathrm{I}} \times \frac{T_{\mathrm{s}}}{T_{\text {vap,I }}} \times \frac{P_{\text {vap }, \mathrm{I}}}{P_{\mathrm{s}}} \times \frac{M_{\text {mix }, \mathrm{I}}}{V_{\mathrm{m}} Z_{\text {mix }, \mathrm{I}}}\right] \tag{3}
\end{align*}
$$

values may be used for the temperature and pressure of the vapour space ($T_{\text {vap }}, P_{\text {vap }}$) and for the molecular mass and compressibility factor of the vapour mixture ($M_{\text {mix }}, Z_{\text {mix }}$).

3 For measurements in a receiving container, equation (3a) is strictly valid only if the temperature of the incoming liquid is the same as that already contained in the tank. The error involved in this assumption is at a maximum when equal volumes of liquid are involved and is then of the order of $0,004 \%$ per kelvin for LNG.

EXAMPLE 1

LNG transfer from a container

Volume of liquid LNG transferred at temperature $t=45550 \mathrm{~m}^{3}$

Measured temperature of liquid, $t=-163,5^{\circ} \mathrm{C}$
Liquid density at $-163,5^{\circ} \mathrm{C} \quad=468,3 \mathrm{~kg} / \mathrm{m}^{3}$
Average temperature of vapour after transfer $\quad=-118^{\circ} \mathrm{C}=155 \mathrm{~K}$
Pressure of vapour after transfer $=110 \mathrm{kPa}$
It may be assumed that the molecular mass of the vapour mixture is that of pure methane (obtained

If is impractical to measure the density of the liquidcontents $1 \odot$ The compressibility factor for the vapour can be taken as unity, of a tank, ϱ_{F} and ϱ_{I} cannot be determined. By using the measured density of the liquid being transferred, however, the simplified equation (3a) can be employed to calculate the mass of product transferred.

$$
m=V_{\text {liq }} \varrho-\left(V_{\text {liq }} \times \frac{T_{\mathrm{s}}}{T_{\text {vap }, \mathrm{F}}} \times \frac{P_{\mathrm{vap}, \mathrm{~F}}}{P_{\mathrm{s}}} \times \frac{M_{\mathrm{mix}, \mathrm{~F}}}{V_{\mathrm{m}} Z_{\mathrm{mix}, \mathrm{~F}}}\right)
$$

f6ffo06ea141/iso-6578-1991 $\left.-\left(45550 \times \frac{288}{155} \times \frac{110}{101,3} \times \frac{16,0426}{23,6447}\right)\right]$

$$
=21331065-62355
$$

$$
\begin{equation*}
=21269 \times 10^{3} \mathrm{~kg} \text { or } 21269 \mathrm{t} \tag{3a}
\end{equation*}
$$

where

$$
V_{\text {liq }}=V_{\mathrm{F}}-V_{\mathrm{I}} \text { (i.e. the volume of liquid transferred); }
$$

ϱ is the average density of the liquid which is transferred.
For a receiving tank which does not already contain hydrocarbon liquid or vapour, equation (3) becomes

$$
\begin{equation*}
m=V_{\text {liq }, \mathrm{F}} \varrho+\left(V_{\text {vap }, \mathrm{F}} \times \frac{T_{\mathrm{s}}}{T_{\text {vap }}} \times \frac{P_{\text {vap }}}{P_{\mathrm{s}}} \times \frac{M_{\text {mix }}}{V_{\mathrm{m}} Z_{\text {mix }}}\right) \tag{3b}
\end{equation*}
$$

NOTES

1 If the vapour space is negligibly small in comparison with the liquid volume or the liquid volume is negligibly small in comparison with the vapour space in the initial or final condition in the tanks, the simplified equation (3a) may be used in practice.

2 Because the mass of vapour is small compared with the mass of liquid transferred, the accurate knowledge of vapour composition and the use of a compressibility factor are not essential and the ideal gaseous molar volume may be used without correction, and typical

EXAMPLE 2

LPG transfer from a container

Calculate the mass of LPG transferred from a container under the following conditions:

	Initial	Final
Volume of liquid in container at $15^{\circ} \mathrm{C}\left(\mathrm{m}^{3}\right)$	45550	850
Liquid density at $15{ }^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	507	507
Vapour space in container (m^{3})	950	40000
Temperature of vapour in container (K)	233	250
Pressure in container vapour space (bar)	1,08	1,12

It may be assumed that the molecular mass of the vapour mixture is the same as that of the liquid and that the compressibility factor is unity, i.e. $M_{\text {mix }}=44,153 \mathrm{~kg} / \mathrm{kmol}$

Substituting into equation (3) gives:

$$
\left.\begin{array}{rl}
m= & {[(45550 \times 507)+} \\
& \left.+\left(950 \times \frac{288}{233} \times \frac{1,08}{1,013} \times \frac{44,153}{23,6447}\right)\right]- \\
& \quad[(850 \times 507)+ \\
& \left.+\left(40000 \times \frac{288}{250} \times \frac{1,12}{1,013} \times \frac{44,153}{23,6447}\right)\right] \\
= & (23093850
\end{array}\right)
$$

5.2.2 Similarly, if the energy measurements are required for stock purposes, take into consideration the liquid equivalent of the vapour in the total ullage space.

6 Energy content (calorific content)

6.1 Calculate the energy content of the liquid using the equation

iTeh STANIDARID PRREVIIEW

$$
Q_{\mathrm{liq}}=m_{\mathrm{liq}} H_{\mathrm{s}, m}
$$

(standalalds itite ha ain
 LNG transfer from a container

6.2 When a quantity of refrigerated hydrocarbon liquid 65 transferred, it will be necessary to make a correction for the calorific content of the vapour occupying the ${ }^{\text {vfolume }}{ }^{1}$ into which, or from which, the liquid is transferred.

Assuming that all measurements have been made under liquid equilibrium conditions, the following equation applies to measurements made in either the delivery or the receiving container.

Energy delivered $=$ Final energy content - Initial energy content

$$
\begin{align*}
\therefore Q= & {\left[V_{\text {liq }, \mathrm{F}} Q_{\mathrm{F}} H_{\mathrm{s}, m, \mathrm{~F}}+\right.} \\
& \left.+V_{\mathrm{vap}, \mathrm{~F}} \times \frac{T_{\mathrm{s}}}{T_{\mathrm{vap}, \mathrm{~F}}} \times \frac{P_{\mathrm{vap}, \mathrm{~F}}}{P_{\mathrm{s}}} \times H_{\mathrm{s}, \mathrm{vol}, \mathrm{~F}}\right]- \\
& -\left[V_{\mathrm{liq}, \mathrm{I}} Q_{\mathrm{I}} H_{\mathrm{s}, m, \mathrm{I}}+\right. \\
& \left.+V_{\mathrm{vap}, \mathrm{I}} \times \frac{T_{\mathrm{s}}}{T_{\mathrm{vap}, \mathrm{I}}} \times \frac{P_{\mathrm{vap}, \mathrm{I}}}{P_{\mathrm{s}}} \times H_{\mathrm{s}, \mathrm{vol}, \mathrm{I}}\right] \tag{5}
\end{align*}
$$

where
$H_{\mathrm{s}, \text { vol }}=\frac{M_{\text {mix }}}{V_{\mathrm{m}} Z_{\text {mix }}} \times H_{\mathrm{s}, m}=$ the gross calorific value on volume basis, in megajoules per cubic metre, of the vapour at the appropriate standard temperature and pressure.

If it is impractical to measure the density of the liquid contents of a tank, ϱ_{F} and ϱ_{I} cannot be determined. By using the measured density of the liquid being transferred, however, the simplified equation (5a) may be employed to calculate the net energy delivered or received.

$$
\begin{equation*}
Q=V_{\text {liq }} \varrho H_{\mathrm{s}, m}-\left(V_{\text {liq }} \times \frac{T_{\mathrm{s}}}{T_{\text {vap }}} \times \frac{P_{\text {vap }}}{P_{\mathrm{s}}} \times H_{\mathrm{s}, \text { vol }}\right) \ldots \tag{5a}
\end{equation*}
$$

where
$V_{\text {liq }}=V_{\text {liq, } F}-V_{\text {liq,I }}$ (i.e. the volume of liquid transferred);
ϱ is the average density of the liquid which is transferred.
For a receiving tank which does not already contain hydrocarbon liquid or vapour, equation (5) becomes

$$
\begin{equation*}
Q=V_{\text {liq }} \varrho H_{\mathrm{s}, m}+\left(V_{\text {vap }, \mathrm{F}} \times \frac{T_{\mathrm{s}}}{T_{\text {vap }}} \times \frac{P_{\text {vap }}}{P_{\mathrm{s}}} \times H_{\mathrm{s}, \mathrm{vol}}\right) \tag{5b}
\end{equation*}
$$

NOTE - See 5.2.1, notes 1, 2 and 3, but for "equation (3a)" read "equation (5a)".

Volume of liquid LNG transferred at
Volume of liquid LNG transferred at
Is/sist/e6detemperature $\boldsymbol{t} 00-8291$ --1991
$\begin{array}{ll}\text { Liquid temperature, } t & =-163,5^{\circ} \mathrm{C} \\ \text { Liquid density at }-163,5^{\circ} \mathrm{C} & =468,3 \mathrm{~kg} / \mathrm{m}^{3}\end{array}$
Average temperature of vapour after transfer $\quad=-118^{\circ} \mathrm{C}=155 \mathrm{~K}$

Pressure of vapour after transfer $=110 \mathrm{kPa}$
Gross calorific value on mass basis of the liquid using example 1 given in 9.2 , i.e. $H_{\mathrm{s}, \mathrm{m}}=54,216 \mathrm{MJ} / \mathrm{kg}$

It may be assumed that the gross calorific value on volume basis for the vapour mixture is that for pure methane at $101,325 \mathrm{kPa}$ and $15^{\circ} \mathrm{C}$ (see annex D)

$$
=37,696 \mathrm{MJ} / \mathrm{m}^{3}
$$

The compressibility factor for the vapour is assumed to be unity, and the resultant error will be less than $0,005 \%$.

$$
\begin{aligned}
Q= & (45550 \times 468,3 \times 54,216)- \\
& -\left(45550 \times \frac{288}{155} \times \frac{110}{101,3} \times 37,696\right) \\
= & \left.\left(1156,848 \times 10^{6}\right)-3,46 \times 10^{6}\right) \\
Q= & 1153,0 \times 10^{6} \mathrm{MJ}
\end{aligned}
$$

[^0]: 1) An International Standard (ISO 4273) dealing with terms relating to petroleum measurement is to be published.
