International Standard

6621/3

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION-MEXAJHAPODHAR OPPAHUSALUUR DO CTAHDAPTUSALUUM-ORGANISATION INTERNATIONALE DE NORMALISATION

Internal combustion engines — Piston rings — Part 3: Material specifications

Moteurs à combustion interne — Segments de piston — Partie 3: Spécifications des matériaux

First edition – 1983-12-15Teh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6621-3:1983</u> https://standards.iteh.ai/catalog/standards/sist/8d04779f-e1ad-4de4-910d-5b29075c1bfb/iso-6621-3-1983

UDC 621.43-242.3

Ref. No. ISO 6621/3-1983 (E)

Descriptors : road vehicles, internal combustion engines, piston rings, material specifications, mechanical properties.

Price based on 2 pages

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 6621/3 was developed by Technical Committee ISO/TC 22, EVIEW Road vehicles, and was circulated to the member bodies in March 1982.

It has been approved by the member bodies of the following countries:

	<u>ISO 6621-3:1983</u>				
Australia	Hungatyandards.iteh.ai/cata	alo Bomania ds/sist/8d04779f-e1ad-4de4-910d-			
Austria	Iran 5b290	7 South/Africa? Rep. of 3			
Belgium	Ireland	Spain			
Brazil	Italy	Sweden			
China	Japan	United Kingdom			
Czechoslovakia	Korea, Dem. P. Rep. of	USA			
Egypt, Arab Rep. of	Korea, Rep. of	USSR			
France	Netherlands				
Germany, F.R.	Poland				

No member body expressed disapproval of the document.

© International Organization for Standardization, 1983 •

INTERNATIONAL STANDARD

Internal combustion engines — Piston rings — Part 3: Material specifications

(standards.

0 Introduction

ISO 6621 is one of a series being developed dealing with piston rings for reciprocating internal combustion engines:

ISO 6621, Internal combustion engines Piston rings DAR

Part 1: Vocabulary.

Part 2: Measuring principles.

Part 3: Material specifications.

Part 4: General specifications.

Part 5: Quality requirements.

ISO 6622, Internal combustion engines – Piston rings –

Part 1: Rectangular rings.

Part 2: Rectangular rings with narrow ring width.

ISO 6623, Internal combustion engines — Piston rings — Scraper rings.

ISO 6624, Internal combustion engines – Piston rings –

Part 1: Keystone rings.

Part 2: Half keystone rings.

ISO 6625, Internal combustion engines – Piston rings – Oil control rings.

ISO 6626, Internal combustion engines — Coil spring loaded oil control rings.

This part of ISO 6621 provides a user's guide to the types of materials available for piston rings.

There are many such materials made by different manufacturers using different casting and machining techniques, all suited to their application. In many instances the chemical compositions differ but the method of manufacture and heat treatment, if used, result in materials with similar mechanical properties from different manufacturers. The performance of rings made from two different materials will therefore be very similar; i.e. several subclasses of materials may meet a given requirement. The final choice of material and subclass shall therefore be agreed between the customer and supplier.

Choice of material made in accordance with the mechanical strength criteria in the table shall also take into account the final ISO 6621-3:1 coating of rings, engine characteristics (rating, liner surface,

standards.iteh.ai/catalog/standards/siete.d/and/microstructural/features such as graphite, cementite 5b29075c1bfb/iso-662nd ferrite.

> For ring manufacture, it is convenient to group the materials into classes according to their moduli since for a ring of given dimensions, the pressure exerted by the ring on the cylinder wall is determined only by the modulus. The material strength is also generally related to modulus, i.e. the higher the modulus the higher the strength, although there are some exceptions depending on method of manufacture. Material hardness on the other hand is determined by both chemical composition and heat treatment; this is made clear from the division of classes into subclasses.

1 Scope and field of application

This part of ISO 6621 establishes a classification of materials intended for the manufacture of piston rings, based on mechanical properties and the stresses that these materials are capable of withstanding.

This part of ISO 6621 applies to the manufacture of piston rings up to and including 200 mm diameter for reciprocating internal combustion engines. It also applies to piston rings for compressors working under similar conditions.

2 Reference

ISO/R 80, Rockwell hardness test (B and C scales) for steel.

1

3 **Mechanical properties**

See the table.

	Mechanical properties MPa or N/mm ²		Materials meeting the required mechanical properties			
Class	Typical modulus of elasticity	Minimum bending strength	Type of material	Minimum hardness	Specific details	Subclass
10	90 000 100 000	300 350	Grey cast iron	93 HRB 95 HRB	Non-heat-treated	11 12
20	115 000 130 000	450 450 450 500 650	Grey cast iron	23 HRC 28 HRC 40 HRC 32 HRC 37 HRC	Heat-treated	21 22 23 24 25
30	145 000	550 500	Carbidic cast iron	25 HRC 30 HRC	Heat-treated pearlitic Heat-treated martensitic	31 32
40	160 000	600 600 600 1 000	Malleable cast iron	95 HRB 22 HRC 30 HRC 27 HRC	Heat-treated pearlitic Heat-treated martensitic Heat-treated martensitic Heat-treated carbidic	41 42 43 44
50	160,000	1 100 1 300 1 300 1 300 	Cepheroidal graphite D cast iron (standa	23 HRC 23 HRC 28 HRC 95 HRB C97 HRB	Heat-treated martensitic Heat-treated martensitic Heat-treated martensitic Pearlitic Ferritic	51 52 53 54 55
60	200 000		Steel <u>ISO (</u> /standards.iteb.ai/catalog/sta	38 HRC 62403HRC 48 HRC 148 HRC	CrMoV - alloyed CrSi - alloyed 04-CrSi - alloyed 04-CrSi - alloyed	61 62 63

Table - Mechanical properties

5b29075c1bfb/iso-6621-3-1983 NOTE — The hardness values are averages from three measurements on one ring, one being at the gap and one each 90° and 180° around from the gap. HRB and HRC hardness testing is in accordance with ISO/R 80.

The application of the hardness measuring methods HRB and HRC is restricted, due to the geometry and the material of piston rings. The hardness values stated are used only for grouping the materials into the individual subclasses. Other hardness measuring methods and their equivalent values shall be agreed between customer and manufacturer.