INTERNATIONAL STANDARD

ISO 6691

First edition 1989-12-01

Thermoplastics for plain bearings – Classification and designation

iTeh Matières thermoplastiques pour paliers lisses Classification et désignation (standards.iteh.ai)

<u>ISO 6691:1989</u> https://standards.iteh.ai/catalog/standards/sist/2d739198-123f-4c4c-8745-5cba233e6b47/iso-6691-1989

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at VIEW least 75 % approval by the member bodies voting.

(standards.iteh.ai)

International Standard ISO 6691 was prepared jointly by Technical Committee ISO/TC 123, *Plain bearings* and ISO/TC 61, *Plastics.* ISO 6691:1989

https://standards.iteh.ai/catalog/standards/sist/2d739198-123f-4c4c-8745-Annexes A, B and C of this International Standard are for intermation-only-1989

© ISO 1989

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Thermoplastics for plain bearings – Classification and designation

iTeh STANDARD PREVIEW

1 Scope

(standards.iteh.ai) ISO 1043-1 : 1987, Plastics – Symbols – Part 1: Basic polymers and their special characteristics.

This International Standard specifies a system for designating <u>6691:1989</u> mere and their special characteristics. the most common thermoplastics for plain bearings catalog/standards/sist/2d739198-123f-4c4c-8745-

The thermoplastic materials are differentiated from each other by a classification system based on appropriate levels of designatory properties, additives and information about their application for plain bearings. The designation system does not include all properties; materials having the same designation cannot therefore be interchanged in all cases.

This International Standard does not specify performance data which may be required for particular applications.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 307 : 1984, Plastics – Polyamides – Determination of viscosity number.

ISO/R 527 : 1966, *Plastics — Determination of tensile properties.*

ISO 1133 : 1981, Plastics – Determination of the melt flow rate of thermoplastics.

ISO 1183 : 1987, *Plastics — Methods for determining the den*sity and relative density of non-cellular plastics.

ISO 1628-5 : 1986, *Plastics — Determination of viscosity number and limiting viscosity number — Part 5: Poly(alkylene terephthalates).*

ISO 1872-1 : 1986, *Plastics — Polyethylene (PE) and ethylene copolymer thermoplastics — Part 1: Designation.*

ISO 1872-2 : 1989, *Plastics* — *Polyethylene (PE) and ethylene copolymer thermoplastics* — *Part 2: Preparation of test specimens and determination of properties.*

ISO 1874-1 : 1985, *Plastics — Polyamide (PA) homopolymers* for moulding and extrusion — Part 1: Designation.

ISO 1874-2 : 1987, *Plastics — Polyamide (PA) homopolymers* for moulding and extrusion — Part 2: Preparation of test specimens and determination of properties.

ISO 7792-1 : 1985, Plastics — Polyalkylene terephthalates — Part 1 : Designation.

3 Designation system

The classification and designation are based on a block system consisting of a Description Block and an Identity Block. The Identity Block comprises an International Standard Number Block and an Individual Item Block. For unambiguous coding of all thermoplastics, the Individual Item Block is subdivided into five data blocks.

		De	esignation			
			Identity	Block		
	International Individual Item Block					
Description Block	Standard Number Block	Data Block 1	Data Block 2	Data Block 3	Data Block 4	Data Block 5

The Individual Item Block starts with a dash. The Data Blocks are separated by commas.

Data Blocks 1 to 5 include the following information :

Data Block 1: Symbol of material and, if applicable, symbol of the plasticizer separated by a dash (see 3.1).

Data Block 2: Intended application or method of processing (see 3.2).

Positions 2 to 4: Important properties and/or additives (see 3.2).

Data Block 3: Designatory properties (see 3.3).

Data Block 4: Type and content of filler or reinforcing materials (see 3.4).

Data Block 5: Information about tribological properties for plain bearings (see 3.5).

The meaning of the letters and digits is different for each data block (see 3.1 to 3.5).

https://standards.iteh.ai/catalog/standards/sist/2d739198-123f-4c4c-8745-Data block 2 comprises up to 4 positions. If at least one of Positions 2 to 4 is taken, and no information is given in Position 1, then the letter X shall figure in Position 1. The letters in Positions 2 to 4 shall be arranged in alphabetical order.

If a data block is not used, this shall be indicated by two commas (,,).

Designation examples are given in clause 4.

3.1 Data Block 1

The chemical nature of the plastic is designated by its symbol in accordance with ISO 1043-1 and - separated by a hyphen - plasticized materials are indicated by a P (see table 1).

Thermoplastics		Name and chemical structure			
Group/name	Symbol	Name and chemical structure			
Polyamide	PA 6	Polyamide 6; homopolymer based on ε -caprolactam			
	PA 6G ¹⁾	Polyamide 6, cast; homopolymer based on ε -caprolactam			
	PA 66	Polyamide 66; homopolycondensate based on hexamethylenediamine and adipic acid			
	PA 610	Polyamide 610; homopolycondensate based on hexamethylenediamine and sebacic acid			
	PA 612	Polyamide 612; homopolycondensate based on hexamethylenediamine and dodecanedioic acid ²⁾			
	PA 11	Polyamide 11; homopolymer based on 11-aminoundecanoic acid			
	PA 12	Polyamide 12; homopolymer based on ω -laurinlactam or ω -aminododecanoic acid			
	PA 12G ¹⁾	Polyamide 12, cast; homopolymer based on $\omega\text{-laurinlactam}$ or $\omega\text{-aminododecanoic acid}$			
Polyoxymethylene	POM	Polyacetal (homopolymer) Polyacetal (copolymer)			
Polyalkylene-	PET	Poly(ethylene terephthalate)			
terephthalate	РВТ	Poly(butylene terephthalate)			
Polyethylene	PE-UHMW	Polyethylene with ultra high molecular weight			
iTe	PE-HDTAN	Polyethylene) PREVIEW			
Polyfluorocarbon	PTFE	Polytetrafluoroethylene			
Polyimide https://stan	PI (Stan dards.iteh.ai/catal 5cba2	Polyindes from polyaddition reactions are available as ther- mosetting plastics. Polyimides from polycondensation reac- tions are available as thermoplastics and thermosetting plastics, as well as copolymers of the imide group. Some thermoplastic polyimides are "apparent thermosetting plastics" because their thermoplastic range lies above the decomposition temperature. Because of their intermediate position, polyimides and imide copolymers are only treated marginally in this International Standard.			
Plasticizer	Р	_			
1) Symbol not standar	dized in ISO 1043-	1 : 1987.			
2) Dodecanedioic acid	is a synonym for a	decanedicarboxylic acid 1,10.			

Table 1 – Symbols for the chemical structure of the materials

3.2 Data Block 2

Position 1 gives the code for the intended use (see table 2).

Table 2 – Data Block 2 – Position 1

Code	Use		
E	Extrusion		
G	General use		
м	Injection moulding		
Q	Compression moulding		
R	Rotational moulding		
x	No indication		

Up to three important properties and/or additives can be indicated in Positions 2 to 4 (see table 3).

Table 3 –	Data	Block 2	2 —	Positions	2	to	4
	Data	DIOCK		r Usitions	~	ω	4

Code	Property or additive
А	Processing stabilized
F	Special burning characteristics
Н	Heat ageing stabilized
L	Light and weather stabilized
R	Release agent
S	Slip agent, lubricated

3.3 Data Block 3

The levels of designatory properties are coded by letters and figures.

The properties appropriate for the designation are different for every thermoplastic material.

Due to manufacturing tolerances, single property values can lie on, or to either side of, the cell limit. It is up to the manufacturer to state which cell will designate the material.

3.3.1 Polyamides

The viscosity number of polyamides designated in accordance with ISO 1874-1 by two digits (see table 4) and, separated by a dash, the modulus of elasticity by three digits (see table 5).

In the last position, rapid-setting products can be indicated with the letter $\ensuremath{\mathsf{N}}\xspace.$

The viscosity number shall be determined in accordance with ISO 307 using the solvents given in table 4. The modulus of elasticity shall be determined in the dry state in accordance with ISO 527 under the conditions specified in ISO 1874-2.

		Viscosity number, ml/g					
Manadal	0 - 4 -	Solvent					
iviaterial	Code	Sulfuric acid	96 % (<i>m/m</i>)	<i>m</i> -cresol			
		above up to		above	up to		
	09		90				
	10	90	110				
PA 6	i Teh S	TAILO DA	ARI30 PR	EVIEN	7		
PA 6G	14	130	160	•			
PA 66	18	(sta ₁₆₀ da)	as.200 en.	ai) _			
PA 610	22	200	240				
PA 612	27	240 ISO	<u>6691:1988</u>				
	https://standards.	teh.ai/catalog/star	$\frac{1}{340}$	198-123f-4c4c-8	745-		
	34	340	+//1so-6691-1989	2			
	11				110		
	12			110	130		
PA 11	14			130	150		
PA 12	16	-	_	150	170		
PA 12G	18			170	200		
	22			200	240		
	24			240			

Table 4 - Viscosity number for polyamides

Table 5 –	Modulus	of elasticity
-----------	---------	---------------

	Modulus d	Modulus of elasticity		21,6 kg (symbol	G).	
Code	N/r	nm ²			T and C aball be since	in former for the former
	above	up to		melt flow rate.	i and d shall be given	In front of the code for
001	50	150				
002	150	250			Table 6 Densit	•••
003	250	350				Ly
004	350	450			Dens	sity ¹⁾
005	450	600		Code	g/c	m ³
007	600	800			above	up to
010	800	1 500		15	- 10 and	0,917
020	1 500	2 500	1	20	0,917	0,922
030	2 500	3 500		25	0,922	0,927
040	3 500	4 500		30	0,927	0,932
050	4 500	5 500		35	0,932	0,937
060	5 500	6 500		40	0,937	0,942
070	6 500	7 500		45	0,942	0,947
080	7 500	8 500		50	0,947	0,952
090	8 500	9 500		55	0,952	0,957
100	9 500	10 500		60	0,957	0,962
110	10 500	h S 11 500 D	ARI	D P ⁶ EV	0,962	
120	11 500	13 000		1) Density ran	ges for uncoloured and	l unfilled polyethylene
140	13 000	(S5 000000	ras.	11211-31)		·····
160	15 000	17 000				
190	17 000	20 000 ISO	<u>6691:19</u>	<u>989</u>	Table 7 – Melt flow	rate
220	20 000 ttps://star	dards.iteh a/catalog/star 23 000 5 cbo 222 c ch	dards/s	sist/2d/39198-12	<u>31-4040-8/45-</u>	
250	23 000		+//180-0	Code	a/10	min

090

200

400

700

3.3.2 Polyethylenes

The density of polyethylenes is designated in accordance with ISO 1872-1 by two digits (see table 6) and, separated by a dash, the melt flow rate (MFR) by one letter and three digits (see table 7).

The density of the base material shall be determined in accordance with ISO 1183 under the conditions specified in ISO 1872-2.

The melt flow rate shall be determined in accordance with ISO 1133 at 190 °C with a load of 2,16 kg (symbol D). For materials with a melt flow rate < 0,1, a test under a load of 5 kg (symbol T) is recommended. If the melt flow rate is still < 0,1, the test should then be carried out under a load of

-						
20	0,917	0,922				
25	0,922	0,927				
30	0,927	0,932				
35	0,932	0,937				
40	0,937	0,942				
45	0,942	0,947				
50	0,947	0,952				
55	0,952	0,957				
60	0,957	0,962				
	0,962					
	1) Density ranges for uncoloured and unfilled polyethylene materials					
1) Density ran materials	ges for uncoloured and	d unfilled polyethylene				
1) Density ran materials 089 0st/2d739198-12	Table 7 – Melt flow 3f-4c4c-8745-	y rate				
1) Density ran rhaterials 289 sist/2d739198-12 691-1989	Table 7 – Melt flow	d unfilled polyethylene v rate				
1) Density ran materials 289 ist/2d739198-12 691-1989 Code	Table 7 – Melt flow 3f-4c4c-8745- Melt flow g/10	d unfilled polyethylene / rate rate (MFR) min				
1) Density ran materials 189 187 189 189 189 1989 Code	Table 7 – Melt flow 3f-4c4c-8745- Melt flow g/10 above	rate (MFR) min up to				
1) Density ran rhaterials 089 <u>ist/2d739198-12</u> 0691-1989 Code 000	Table 7 – Melt flow 3f-4c4c-8745- Melt flow g/10 above	rate (MFR) min up to 0,1				
1) Density ran materials 089 ist/2d739198-12 6691-1989 Code 000 001	Table 7 — Melt flow 3f-4c4c-8745- Melt flow g/10 above — 0,1	rate (MFR) min 0,1 0,2				
1) Density ran materials 089 05572d739198-12 0691-1989 Code 000 001 003	Table 7 – Melt flow 3f-4c4c-8745- Melt flow g/10 above - 0,1 0,2	v rate v rate (MFR) min up to 0,1 0,2 0,4				
1) Density ran rhaterials 289 5691-1989 Code 000 001 003 006	Table 7 – Melt flow 3f-4c4c-8745- Melt flow g/10 above - 0,1 0,2 0,4	rate (MFR) min 0,1 0,2 0,4 0,8				
1) Density ran materials 289 5691-1989 Code 000 001 003 006 012	Table 7 – Melt flow 3f-4c4c-8745- Melt flow g/10 above - 0,1 0,2 0,4 0,8	rate (MFR) min 0,1 0,2 0,4 0,8 1,5				
1) Density ran materials 289 551/2d739198-12 5691-1989 Code 000 001 003 006 012 022	Table 7 – Melt flow 3f-4c4c-8745- Melt flow g/10 above - 0,1 0,2 0,4 0,8 1,5	v rate v rate (MFR) min up to 0,1 0,2 0,4 0,8 1,5 3				

6

12

25

50

12

25

50

100

3.3.3 Polyalkyleneterephthalates

The designatory property of polyalkyleneterephthalates according to ISO 7792-1 is the viscosity number, determined in accordance with ISO 1628-5, and designated by two digits (see table 8).

		Viscosity nu	umber, ml/g	
Material	Code	above	up to	
	06		60	
	07	60	70	
	08	70	80	
DET	09	80	90	
PEI	10	90	100	
	11	100	120	
	13	120	140	
	15	140	_	
	08		90	
	10	90	110	
DDT	12	110 Te	S 130	DA
I DI	14	130	150	
	16	150		ar
	18	170	_	

Table 8 - Viscosity number for polyalkyleneterephthalate

Table 9 - Types of fillers and reinforcing materials (Position 1)

Code	Туре
В	Boron
С	Carbon
G	Glass
к	Chalk
м	Minerals ¹⁾ , metal ¹⁾
S	Synthetic organic material
Т	Talcum
х	No indication
Y	Others ¹⁾
 More detaile itions 5 and 6 (set 	ed information on the fillers shall be given in Pos- ee table 12).

Table 10 – Physical form of fillers and reinforcing materials (Position 2)

16	140				
08		90		Code	Morphology
10	90	110		D	Powder
12	110 Te	S 130	DAI	RD PRE	Fibre
14	130	150		Н	Whisker
16	150	(S ₁₇₀ and	ard	s.iten.al	Spheres
18	170	<u> </u>		х	No indication
		17	10 ((0	1 1000	

ISO 6691:1989

https://standards.iteh.ai/catalog/standards/sist/2d739198-123f-4c4c-8745-5cba233e6b47/iso-669Table911 - Mass content (Positions 3 and 4)

3.3.4 Others

The coding for the properties of polyxymethylene, polytetrafluoroethylene and polyimide will be included in future editions of this International Standard.

3.4 Data Block 4

The fillers and reinforcing materials, as well as additives specific for the application in plain bearings, are coded :

- Position 1: Types of fillers and reinforcing materials coded by a letter (see table 9).
- Position 2: Physical forms of fillers and reinforcing materials coded by a letter (see table 10).
- Positions 3 and 4: Mass content of fillers and reinforcing materials coded by two digits (see table 11).
- Positions 5 and 6: Fillers in position 1 coded by two letters (see table 12).

Code	Weight percentage		
Code	above	up to	
0X	No indication		
01	0,1 (inclusive) 1,5		
02	1,5	3	
05	3	7,5	
10	7,5	12,5	
15	12,5	17,5	
20	17,5	22,5	
25	22,5	27,5	
30	27,5	32,5	
35	32,5	37,5	
40	37,5	42,5	
45	42,5	47,5	
50	47,5	55	
60	55	65	
70	65	75	
80	75	85	
90	85		

Code	Туре	
CU	Bronze	
GR	Graphite	
мо	MoS ₂ (Molybdenumdisulfide)	
OL	Mineral oil	
PE	Polyethylene	
SI	Silicone	
TF	PTFE (Polytetrafluoroethylene)	
ws	Tungsten-sulfide or -disulfide, tungsten-selenide	

Table 12 - Fillers (Positions 5 and 6)

3.5 Data Block 5

Tribological properties (corresponding International Standards are in preparation).

4 Designation examples

A summary of the designation system is given in table 13.

Description Block	(standards.itemplearies)					
International Standard Number Block	<u>ISO 6691:1989</u> ISO 6691 https://standards.iteb.ai/catalog/standards/sist/2d739198-123f-4c4c-8745-					
	Data Block	Position	5cba233e6b47/iso-6691-1989 Contents	Refer Subclause	Reference Subclause Table	
	1		Symbol of material and, if applicable, symbol of the plasticizer separated by a dash	3.1	1	
	-	1	Intended application or method of processing	3.2	2	
to dividual	2	2 to 4	Important properties and/or additives	3.2	3	
Individual Item Block	3		Designatory properties	3.3	4 to 8	
		1	Types of fillers and reinforcing materials	3.4	9	
		2	Physical forms of fillers and reinforcing materials	3.4	10	
	4	3 and 4	Mass content of fillers and reinforcing materials	3.4	11	
		5 and 6	Additional information	3.4	12	
	51)		Tribological properties for plain bearings	3.5		

Table 13 – Summary of the designation system

EXAMPLE 1

A polyamide 6 (PA 6), for injection moulding (M) with mould release agent (R), having a viscosity number of 140 ml/g (14), a modulus of elasticity of 2 600 N/mm² (030) and rapid setting (N) would be designated :

	Thermoplastics	ISO 6691	-PA 6,	MR,	<u>14-030N</u>
Description					
International Standard					
Data Block 1: symbol					
Data Block 2: Position 1: for injection m Position 2: for mould rele	ouldingase agent				
Data Block 3: Position 1: viscosity num Position 2: modulus of ela Position 3: rapid setting	berasticity				

Designation: ISO 6691-PA 6,MR,14-030N

EXAMPLE 2

A polyamide 66 (PA 66), without indications as to use and additives in Data Block 2, having a viscosity number of 280 ml/g (27), a modulus of elasticity of 4 000 N/mm² (040), rapid setting (N) and 20 % glass fibre (GF20) would be designated:

	Thermoplastics ISO 6691 PRA-66 IE W	27-040N,	GF20
Description	(standards.iteh.a ⁱ)		
International S	tandard <u>ISO 6691:1989</u>		
Data Block 1:	symbolhttps://standards.iteh.ai/catalog/standards/sist/2d739198-123f-4c4c-8745-		
Data Block 2:	no indication, therefore two commas only		
Data Block 3:	Position 1: viscosity number Position 2: modulus of elasticity Position 3: rapid setting		
Data Block 4:	Position 1: for glass		
	Position 2: fibres		
	Positions 3 and 4: for mass content		

Designation: ISO 6691-PA 66,,27-040N,GF20

5 Ordering information

Purchaser and supplier shall agree if and which tests are to be carried out.

If mechanical and/or tribological properties are to be tested, it shall be agreed whether such tests be carried out on

- a) unmodified parts of the delivered goods;
- b) test bars, manufactured from the same batch;

c) test bars taken from a finished part to be supplied, and whether the test shall be carried out parallel or perpendicular to the flow direction and/or machining direction.

Annex A

(informative)

Characteristics and properties of the most common thermoplastics (unfilled)

A.1 Properties and applications of unfilled thermoplastics

Table A.1 gives an outline of the properties and applications of unfilled thermoplastics most commonly used for plain bearings.

Group of thermoplastics (symbol)	General description	Chemical properties	Examples of application
Polyamide (PA)	Impact-resistant material, extraordi- narily shock- and wear-resistant, good damping properties. Characteristics High sliding resistance in dry running. Relatively high moisture absorption	Resistant to fuels, oils, and greases and to most common solvents. Sensitive to mineral acid even in dilute solution, but not attacked even by strong alkalis. The use of PA 6 and PA 66 in hor water re- quires formulations that are stabilized against hydrolysis. PA 11 and PA 12 are widely resistant to hydrolysis.	Bearings subjected to shock and vi- bration. Guide blocks in steel mill couplings. Bushes for brake rods in wagon con- struction. Bearings for agricultural machinery. Spring eye bushes.
Polyoxy- methylene (POM)	Hard material, therefore higher resist- ance to pressure than polyamide, but a more sensitive to shock. Less wear resistant but smaller coefficient of fric- tion than polyamide. Very low moisture absorption.	above all to organic liquids. Only a few solvents can dissolve POM. Even at high temperatures POM-copolymer withstands strong alkaline solutions such as 50 % NaOH. Chemicals having an oxidizing effect and strong acids (pH < 4) attack POM.	Plain bearings having more severe re- quirements concerning dimensional stability and coefficient of friction. Good for dry running or deficient lubrication. Plain bearings for fine mechanics, electromechanics and household appliances.
Polyethylene- terephthalate (PET) Polybutylene- terephthalate (PBT)	Hardness similar to that of POM; however, decreases considerably above 70 °C. Up to 70 °C, wear and coef- ficient of friction very low. Low moisture absorption.	Good weather resistance and high resistance to numerous solvents, oils, greases, and salt solutions. Sufficiently resistant to many acids and alkalis in aqueous solution. Attacked by concen- trated inorganic acids and alkalis. Halogenated hydrocarbons such as methylene chloride and chloroform lead to high swelling. Sensitive to hydrolysis at higher temperatures.	Application for plain bearings similar to POM. Mostly for plain bearings at temperatures below 70 °C. Good for dry running and deficient lubrication. Plain bearings for fine mechanics and submerged installations, guide bushes for rods. Plain bearings for oscillating movements.
Polyethylene with ultra high molecular weight (PE-UHMW) High-density polyethylene (PE-HD)	 PE-UHMW has high shock resistance. PE-HD has low resistance to permanent pressure. However, it is resistant to shock. About twice the thermal expansion of PA and POM. Excellent wear resistance against abrasive stresses. Good sliding and bedding characteristics. No moisture absorption. Resistant to low temperatures. 	At room temperature, PE is inert to water, alkaline solutions, salt solutions, and inorganic acids (except strongly oxidizing acids). At room temperature, polar liquids such as alcohols, organic acids, esters, ketones, and the like only result in slight swelling. Aliphatic and aromatic hydrocarbons and their halogen derivates are absorbed more strongly, resulting in a decrease in strength. After the diffusion of these media, polyethylene can regain its original properties. Non-volatile liquids such as greases, oils, waxes, etc. are less active.	Plain bearings for installation in waters carrying sand.Road and agricultural machinery construction.Bearings for low temperatures.Plain bearings in chemical installations.

Table A.1