International Standard

6698

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION•МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ•ORGANISATION INTERNATIONALE DE NORMALISATION

Cycles — Screw threads used to assemble freewheels on bicycle hubs

Cycles - Filetages utilisés pour l'assemblage des roues libres sur les moyeux de bicyclettes

First edition - 1981-07-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 6698:1981

https://standards.iteh.ai/catalog/standards/sist/09e9eea9-fbf5-4592-965e-d1e72def1c42/iso-6698-1981

UDC 629.118.3.012.6:621.882.082

Ref. No. ISO 6698-1981 (E)

Descriptors: road vehicles, bicycles, screw threads, hubs, free wheels, dimensions, dimensional tolerances, designation.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 6698 was developed by Technical Committee ISO/TC 149, Cycles, and was circulated to the member bodies in December 1979. standards.iteh.ai)

It has been approved by the member bodies of the following countries:

ISO 6698:1981

hFrance and ards. iteh. ai/catalog/Poland ds/sist/09e9eea9-fbf5-4592-965e-Austria Belgium

d1e72derSouth Africas Rep. of Germany, F. R. Brazil India Switzerland

United Kingdom Bulgaria Italy

Czechoslovakia Korea, Rep. of USA **USSR** Egypt, Arab Rep. of Mexico

The member body of the following country expressed disapproval of the document on technical grounds:

China

Cycles — Screw threads used to assemble freewheels on bicycle hubs

0 Introduction

Inch screw threads of British Standard Cycle (B.S.C.) thread profile are used extensively throughout the world for various applications on bicycle components, and have been standardized in national standards. The purpose of this International Standard is to provide an International Standard for the particular screw thread used to assemble freewheels on bicycle hubs: it is based on the use of the ISO basic thread profile and complies as far as is practicable with existing International Standards for general purpose screw threads.

The change to an ISO system of screw threads will inevitably take a long time to complete in view of the millions of bicycles now in use which employ B.S.C. thread profile inch screw threads and for which replacement spare parts will be required. For this reason, in order to minimise changes in production methods during the change to the international Standard, and also to secure satisfactory interchangeability with the B.S.C. screw threads now used, the ISO screw thread in this International Standard has the same pitch as that of the 1,370 in × 24 t.p.i. B.S.C. screw thread it is intended to replace; this means that the pitch is in inch units (turns per inch or t.p.i.) but all other dimensions are specified in metric units.

A 1 3/8 (1,375) in \times 24 t.p.i. screw thread of ISO basic profile has been adopted in this International Standard. The basic pitch diameter of this thread differs by only 0,003 mm from that of the 1,370 in \times 24 t.p.i. B.S.C. thread, but, due to the smaller crest truncation of the ISO profile (see figure 1) interference may occur at the major diameter when an ISO hub thread made towards its upper limit is assembled with a B.S.C. freewheel thread made towards its lower limit on major diameter. The possibility of interference occurring in this manner is considered to be unlikely in practice because of the effect of the manufacturing tolerances (—ve on the hub and +ve on the freewheel) and the usual practice of using high-crested screwing taps. However, a practical investigation has been carried out and has confirmed that there is little possibility of any interference arising in practice.

1 Scope and field of application

This International Standard specifies the thread profile and limits and tolerances for the screw threads used to assemble freewheels on bicycle hubs. It is based on:

a) the use of the ISO basic thread profile given in ISO 68;

- b) satisfactory interchangeability with the corresponding British Standard Cycle (B.S.C.) thread; this has required the use of an inch pitch (t.p.i.);
- c) the use of screw thread tolerance grades and tolerance positions given in ISO 965/1;
- d) the use of gauges made to ISO 1502.

2 References

ISO 68, 7SO general purpose screw threads — Basic profile.

SISO 965/1, ISO general purpose metric screw threads — Tolerances & Part 1: Principles and basic data.

ISO 1502, ISO general purpose metric screw threads — Gauging.

3 Basic ISO thread profile and basic sizes

3.1 Basic profile

The basic profile is that given in ISO 68 and is shown in figure 1. It is the theoretical profile associated with the basic sizes of the major, pitch and minor diameters of the screw thread.

3.2 Basic sizes

The basic major diameter, and the basic pitch and minor diameters determined from the basic profile, are given in table 1.

Table 1 — Basic dimensions

Nominal diameter		Basic sizes, mm					
of thread in	thi I	Major diameter	Pitch diameter	Minor diameter			
1,375	24	34,925	34,238	33,779			

4 Limits and tolerances

4.1 Fundamental deviations and maximum material limits

The fundamental deviations are applied to the basic diameters and establish the maximum material limits.

For the hub thread the fundamental (upper) deviations are negative and correspond to tolerance position "g" on the major, pitch and minor diameters.

For the freewheel thread the fundamental (lower) deviations are zero and correspond to tolerance position "H" on the major, pitch and minor diameters.

4.2 Tolerance grades, tolerances and limits of size

The application of tolerances to the maximum material limits, negative tolerances for the hub thread, and positive tolerances for the freewheel thread, determines the minimum material limits of size.

The tolerances and limits of size are given in tables 2 and 3 respectively for the hub and the freewheel. The tolerances are grade 6 in accordance with ISO 965/1. Teh STANDA

The fundamental deviations and tolerance zones are shown in

6 Gauging system

The gauging system is that laid down in ISO 1502 to which reference should be made for details of the thread profiles of the screw gauges and the method of application of the gauges.

ISO 1502 gives formulae for the calculation of the gauge limits. These formulae have been used to calculate the gauge limits for the freewheel and hub in this International Standard, and these limits are given in tables 4 to 7 inclusive. It should be noted that the pitch diameter limits given in tables 4 to 6 inclusive relate to the simple pitch diameter, and separate tolerances are given in ISO 1502 for the pitch and flank angles of these gauges.

These tolerances are:

Pitch tolerance = 0,005 mm

Flank angle tolerance

- = ± 15' for profiles with complete flanks
- = ± 16' for profiles with truncated flanks.

Table 2 - Limits and tolerances for screw threads on hubs

5 Designation

figure 2.

Screw threads made to this International Standard are designated by :

https://standards.iteh.ai/catalog/stand

- a) the nominal diameter of the thread in inch units,
- b) the pitch of the thread in t.p.i.,
- c) the tolerance classes of the freewheel and hub thread respectively.

Example: 1,375 - 24 6H/6g

<u>ISO 669</u>	t.p.j. 8:198	Majo	r diame mm	ter, d	Pitch	Minor diam. d ₁ mm		
log/standa	ırds/sis	max.ed	aq _o ibi	-45in2-	max.	tol.	min.	max.
det1c42/ ire	SO ₂ 603	34,899	0,180	34,719	34,212	0,125	34,087	33,639
	1	2	3	4	5	6	7	8

NOTE — The tolerances given in columns 3 and 6 are those recommended in ISO 965/1 for the nearest metric pitch corresponding to the t.p.i. given in column 1.

Note that the grade 6 pitch diameter tolerance differs from the grade 6 major diameter tolerance.

The limit for the maximum minor diameter corresponds to a maximum truncation of 3H/16: this conforms to the specifications for the root contour of external threads given in ISO 965/1.

Table 3 — Limits and tolerances for screw threads on freewheels

t.p.i.	Major diameter, <i>D</i> mm		Pitch diameter, D_2 mm			Minor diameter, D_1		
	D_3 min.	D min.	max.	tol.	min.	max.	tol.	min.
24	35,001	34,925	34,408	0,170	34,238	34,015	0,236	33,779
. 1	2	3	4	5	6	7	8	9

NOTE - The tolerances given in columns 5 and 8 are those recommended in ISO 965/1 for the nearest metric pitch corresponding to the t.p.i. given in column 1.

Note that the grade 6 pitch diameter tolerance differs from the grade 6 major diameter tolerance.

 D_3 min. is the diameter to the radiused root of the freewheel thread that just clears the crest of a maximum hub thread, assuming no clearance between the flanks of the assembled threads.

iTeh STANDARD PREVIEW

(standards.iteh.ai)
Table 4 — Hub — Limits of size for GO screw ring and calliper gauges, and associated screw check, wear and setting plugs

https://standards.iteh.ai/catalog/standards/sist/09e9eea9-fbf5-4592-90-90-90-90-90-90-90-90-90-90-90-90-90-								
d1e72d Type of gauge	efl c42/ <mark>Major</mark> 98-198 diameter		Pitch diameter		Minor diameter			
	max.	min.	max.	min.	max.	min.		
Solid GO screw ring gauge	_	34,984	34,217	34,203	33,760	33,746		
Adjustable GO screw ring gauge	-	34,984	Set on se	tting plug	33,760	33,746		
GO screw calliper gauge	Clea	Cleared Distanc			istance from pitch line to crest is 0,22			
GO screw check plug for new solid GO screw ring gauge	34,908	34,890	34,199	34,191	33,583	, - ,		
NOT GO screw check plug for new solid GO screw ring gauge	34,433 5	34,424 5	34,221	34,213	33,593	-		
Wear check plug for solid or adjustable GO screw ring gauge	34,442 5	34,433 5	34,230	34,222	33,593	_		
Setting plug for GO screw calliper gauge	34,908	34,890	34,199	34,191	33,583	. ± −, , , .		
Full profile setting plug for adjustable GO screw ring gauge	34,908	34,890	34,210	34,202	33,593	_		
Truncated profile setting plug for adjustable GO screw ring gauge	34,422 5	34,413 5	34,210	34,202	33,593	- -		

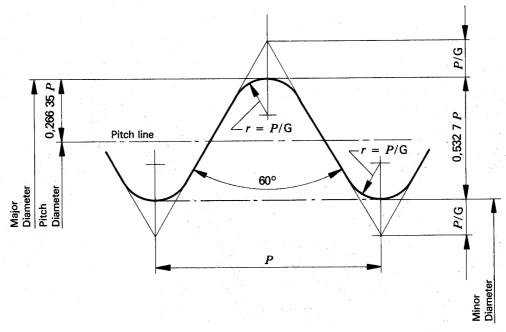
Table 5 — Hub — Limits of size for NOT GO screw ring and calliper gauges, and associated screw check, wear and setting plugs

Dimensions in millimetres

Type of gauge	Major diameter		Pitch diameter		Minor diameter	
	max.	min.	max.	min.	max.	min.
Solid NOT GO screw ring gauge	Cleared	34,908	34,087	34,073	33,882	33,854
Adjustable NOT GO screw ring gauge	Cleared	34,908	Set on se	tting plug	33,882	33,854
NOT GO screw calliper gauge	Thre	ad profile s	izes as for	NOT GO so	crew ring g	auge
GO screw check plug for new solid NOT GO screw ring gauge	34,908	34,890	34,069	34,061	33,453	_
NOT GO screw check plug for new solid NOT GO screw ring gauge	34,783	34,765	34,091	34,083	33,475	_
Wear check plug for solid or adjustable NOT GO screw ring gauge	34,788	34,770	34,096	34,088	33,475	_
Setting plug for NOT GO screw calliper gauge	34,783	34,765	34,080	34,072	33,453	_
Full profile setting plug for adjustable NOT GO screw ring gauge	34,776	34,758	34,080	34,072	33,475	-
Truncated profile setting plug for adjustable NOT GO screw ring gauge	34,297	34,279	34,080	34,072	33,475	_

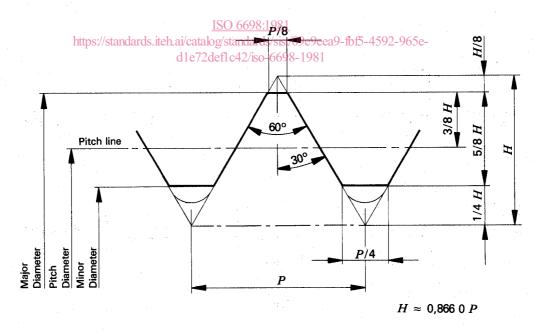
iTeh STANDARD PREVIEW (standards.iteh.ai)

Table 6 - Freewheel - Limits of size for GO and NOT GO screw plug gauges


https://standards.iteh.ai/catalog/standards/sist/09e9eea9-fbf5-4592-965e in millimetres

	die/2defie-	12/1SU-009	6-1981 Pi				
Type of gauge		Major diameter		New gauge		Minor diameter	
·	max.	min.	max.	min.	min.	max.	
GO screw plug gauge	34,948	34,926	34,255 5	34,244 5	34,232 5	33,626	
NOT GO screw plug gauge	34,636 5	34,614 5	34,419	34,408	34,402	33,626	

Table 7 — Hub and freewheel — Limits of size for GO and NOT GO plain ring or calliper gauges for hub major diameter, and GO and NOT GO plain plug gauges for freewheel minor diameter


Dimensions in millimetres

Time of manage		GO gauge	NOT GO gauge		
Type of gauge	New gauge max. min.		Worn gauge	max.	min.
Plain ring or calliper gauge	34,869	34,853	34,899 max.	34,727	34,711
Plain plug gauge	33,825	33,809	33,779 min.	34,023	34,007

iTeh STANDARD PREVIEW

Profile of British Standard Cycle thread (Standards.1ten.al)

Profile of ISO thread

Figure 1 — Profiles of British Standard Cycle and ISO threads

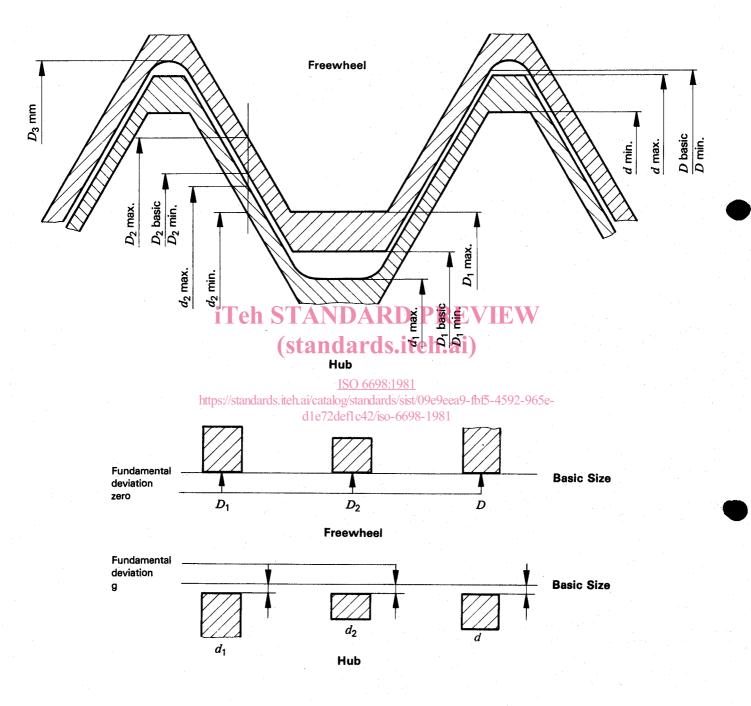


Figure 2 — Thread profiles and tolerance zones for ISO freewheel and hub threads