TECHNICAL REPORT

IEC TR 62390

First edition 2005-01

Common automation device – Profile guideline

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 62390:2005</u> https://standards.iteh.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-32649e9a7e6d/iec-tr-62390-2005

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (<u>www.iec.ch</u>)
- Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Publishedstandards.iteh.ai)

This summary of recently issued publications (www.iec.ch/online_news/ justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information. TR 62390:2005

https://standards.iteh.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-

• Customer Service Centre 9e9a7e6d/iec-tr-62390-2005

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u>
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

TECHNICAL REPORT

IEC TR 62390

First edition 2005-01

Common automation device – Profile guideline

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 62390:2005</u> https://standards.iteh.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-32649e9a7e6d/iec-tr-62390-2005

© IEC 2005 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

PRICE CODE

CONTENTS

FC	REWORD		5
IN ⁻	TRODUCTION		7
1	Scope		0
2	•	ences	
3		abbreviations	
		S	
4		ions	
4		erview	
5		del and device profiles	
		5	
		utomation configurationevice structure	
		model	
6		n steps	
•			
		Scope, compatibility levels and device classification	
		ep: Definition of device functions and their relations	
	6.4 Third step	: Parameter list definition of a itch ai	24
	6.5 Fourth ste	ep: Grouping of functions to functional elements	26
		Device behaviour description 12005	
		nt(optional)isExtensions/of-existing2profiles 1.bfa-4ec4-b162-	
7	·	s 32649e9a7e6d/iec-tr-62390-2005	
_		nplate structure	
8			
	•	of ISO device profile classes	
	8.2 Compariso	on of function block and object models	35
An	nex A (informativ	e) Roles of the device in the life cycle	36
An	nex B (informative	e) Collection of parameter characteristics	37
An	nex C (informativ	e) Compatibility level details	39
An	nex D (informativ	e) Data type	40
An	nex E (informative	e) Engineering unit	41
An	nex F (informative	e) UML class diagram semantics	43
An	nex G (informativ	e) Device classification examples	44
An	nex H (informativ	e) Parameter list model	46
An	nex I (informative	e) Function block model	47
An	nex J (informative	e) Object model	55
An	nex K (informativ	e) Common profile and device identification information	61
Bib	oliography		64

Figure 1 – Profile documents and their profile writer	/
Figure 2 – Profile development using ISO 15745-1	
Figure 3 – Typical automation application system	16
Figure 4 – Modular view of the hardware and software structures of a device (example)	
Figure 5 – Device structure class diagram (example)	17
Figure 6 – General interface model of a device	18
Figure 7 – Profile definition steps	19
Figure 8 – Relations between profiles and products	21
Figure 9 – Levels of functional compatibility	21
Figure 10 – Functional diagram of a power drive system (PDS) (example)	24
Figure 11 – UML use case (examples)	26
Figure 12 – Device functional structure of a flow transmitter based on the object model (example)	27
Figure 13 – Device functional structure of a flow transmitter based on the function block model (example)	27
Figure 14 – Device behaviour as state chart diagram (example)	28
Figure 15 – ISO 15745-1 device profile class diagram	33
Figure 16 – Device profile models	35
Figure F.1 – Description elements of UML class diagrams	43
Figure I.1 – Function block diagram derived from the P&ID	
Figure I.2 – Function blocks implemented in different devices	48
Figure I.3 – Function block application program in control system structure paradigms	
Figure I.4 – Function blocks of LEC 614134g3tandards/sist/24bf7965-1.bfa-4ec4-b162-	49
Figure I.5 – Function blocks in field devices and their integration in control programs	50
Figure I.6 – Concept of a central controller according to IEC 61131-3	51
Figure I.7 – Proxy FB and communication FB	52
Figure I.8 – Function block application programs distributed in devices according to IEC 61499	52
Figure I.9 – Application program distributed among a field device	53
Figure I.10 – Function block model in a field device	
Figure J.1 – Object model elements versus procedural programming elements	56
Figure J.2 – Object addressing	57
Figure J.3 – Device object model	58
Figure J.4 – Assembly object	59
Figure J.5 – Parameter object	59
Figure J.6 – Communication management objects (example)	60
Table 1 – Device application and communication features	22
Table 2 – Interchangeability matrix for device exchange purpose	23
Table 3 – Example of a device behaviour as state transition table	
Table 4 – Filled-in template of a device profile (example)	32
Table 5 – Equivalence between function block and object models	
Table B.1 – Collection of parameter characteristics	
Table C.1 Polation between parameter characteristics and device features	

TR	62390	©	IEC:2005	(E)	١
----	-------	---	----------	-----	---

Table D.1 – Data types	40
Table E.1 – Engineering units (examples)	41
Table G.1 – Device classification (hierarchy) (examples)	44
Table K.1 – Common profile header elements (ISO 15745-1, Table 1)	62
Table K 2 – Common identification parameters stored in the device	63

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC TR 62390:2005

https://standards.iteh.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-32649e9a7e6d/iec-tr-62390-2005

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMON AUTOMATION DEVICE – PROFILE GUIDELINE

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC/National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with anciec Publication.
- 6) All users should ensure that they have the latest edition of this publication for the publication of the
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 62390, which is a technical report, has been prepared by IEC technical committee 65: Industrial-process measurement and control, and ISO SC5 of ISO technical committee 184: Enterprise-control system integration.

It is published as a double logo standard.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting
65/334/DTR	65/340/RVC

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 62390:2005</u> https://standards.iteh.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-32649e9a7e6d/iec-tr-62390-2005

INTRODUCTION

This guideline is a recommended outline for use by standardization product committees, fieldbus consortia and product manufacturers to develop and provide profiles for networked devices. Some aspects of this guideline may also be applicable to stand-alone devices. The present wide variation in the form of concepts and methods used for disclosing device information and behaviour to users of devices leads to longer evaluations required to understand how to use and apply networked industrial devices. This variation makes determining device interoperability, interchangeability, comparisons and common device behaviour more difficult. Therefore, it is the intention of this guideline to provide a common and more generic way to publish device information and behaviour. This is a contribution to reduce the total cost of the industrial control system.

Profiles define a common set of functionality for a class of devices in a given industrial domain, thus allowing system designers, system integrators and maintenance staff to handle profile-based devices without special tool configuration. They also allow consistent structuring and semantics of device functionality.

NOTE Other technologies are available to support the integration of devices into control systems, in particular to handle manufacturer-specific extensions in commissioning and engineering tools. Examples of such technologies are device description languages, which detail the internal structure of the device, or standardized software interfaces, where each device is represented by a dedicated software component.

Figure 1 shows the various possible profile documents and the typical writer of each document. The figure also illustrates the developing sequence for the developing of the profile documents. It is proposed that this profile guideline be the base for other working groups to develop profile standards and product class profiles. The root device profiles and the manufacturer device profiles can be developed from these profile standards. Finally, the manufacturer can create the specific device descriptions for his products. Any shortcut is possible between device profile documents.

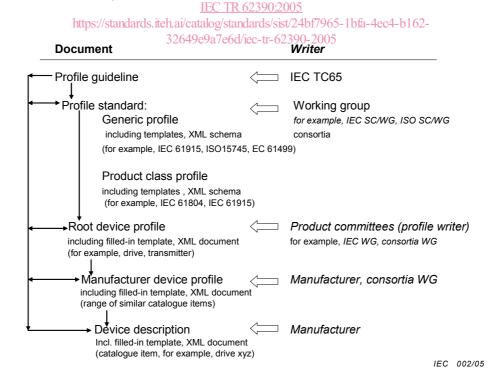


Figure 1 - Profile documents and their profile writer

This guideline provides the context, recommended minimum contents and construction rules for device profiles. Recommended generic device models, appropriate analysis and design diagrams using standards as UML (Unified Modeling Language) and methods to construct those models are provided.

This guideline provides recommendations for conveying the necessary device information to non-human users of the device profile such as software tools and application programs in an electronic file. These recommendations include the use of standards such as XML (eXtensible Markup Language).

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC TR 62390:2005</u> https://standards.iteh.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-32649e9a7e6d/iec-tr-62390-2005

COMMON AUTOMATION DEVICE – PROFILE GUIDELINE

1 Scope

This Technical Report provides guidance for the development of device profiles for industrial field devices and control devices, independent of their complexity.

NOTE 1 Examples of devices covered are limit switches and contactors for simple device networks, medium complex devices, such as transmitters and actuators for process control, and complex devices for fieldbuses, such as power drive systems.

NOTE 2 This guideline is also recommended to be used for devices such as programmable controllers, network components and HMI. If a device is user programmable, its features, as introduced in this guideline (for example, parameters and behaviour), cannot be completely described in the profile. However, profile writers may agree on general common functions like Start, Stop and Reset as well as identification and process inputs/outputs.

A device profile may cover various aspects such as physical, functional, communication, electrical and functional safety as well as application system aspects, irrespective of whether these aspects are accessible over the network. This guideline focuses on the functional aspects of the device (see 3.1.9).

NOTE 3 Different users of a device profile such as device manufacturers, system integrators and maintenance operators may only use specific aspects of the profile.

The guideline is written in a network independent way. Therefore, it is applicable for various fieldbuses, including those based on Ethernet. The guideline is intended to be used by IEC product standards committees and industrial communications networks consortia when they develop their device profile organizations and structures. It is not intended to provide an outline for a specific device profile. Further, this guideline presents device models to better guide and delineate a device profile's content. The profile guideline allows the use of a parameter list, function block model and/or object model to convey the structure and behaviour of the device in a unique manner. It is up to the profile writers to decide which of the models they apply.

To be useful to users a common method for conveying the device profile information is required. This guideline recommends the use of device profile templates. This guideline gives an example of a template, which is intended to be the basis of the structure and content of further templates which may be developed by the relevant profile groups.

This will allow users of these profiles to make comparisons, determine interoperability and interchangeability, and recognize common device behaviour.

The development of industrial application and process profiles, as covered by ISO 15745-1, is not within the scope of this guideline.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61131-3:2003, Programmable controllers – Part 3: Programming languages

IEC/PAS 61499-1:2000, Function blocks for industrial-process measurement and control systems – Part 1: Architecture

IEC/PAS 61499-2:2001, Function blocks for industrial-process measurement and control systems – Part 2: Software tools requirements

IEC/PAS 61804 (all parts), Function blocks (FB) for process control

IEC/PAS 61804-2:2004, Function blocks (FB) for process control – Part 2: Specification of FB concept and Electronic Device Description Language (EDDL)

ISO 15745 (all parts), Industrial automation systems and integration – Open systems application integration framework

ISO 15745-1:2003, Part 1: Generic reference description

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this document, the following terms and definitions apply.

3.1.1

algorithm

completely determined finite sequence of instructions by which the values of the output variables can be calculated from the values of the input variables.

[IEV 351-11-21].

(standards.iteh.ai)

3.1.2

application program

IEC TR 62390:2005

software functional relement specific to lthe a solution of a probleme in lindustrial process measurement and control 32649e9a7e6d/iec-tr-62390-2005

NOTE An application may be distributed among resources, and may communicate with other applications.

3.1.3

attribute

property or characteristic of an entity

3.1.4

class

description of a set of *objects* that share the same *attributes*, *operations*, methods, relationships, and semantics

[UML V1.5]

3.1.5

data

reinterpretable representation of *information* in a formalized manner suitable for communication, interpretation or processing

[ISO 2382, 01.01.02]

3.1.6

data type

set of values together with a set of permitted operations

[ISO 2382, 15.04.01]

3.1.7

device

field device

1. networked independent physical *entity* of an industrial automation system capable of performing specified functions in a particular context and delimited by its *interfaces*

[IEC 61499-1]

2. entity that performs control, actuating and/or sensing functions and interfaces to other such entities within an automation system

[ISO 15745-1]

3.1.8

device class

set of devices with a defined functional commonality in terms of their *parameters* or *functional* elements

3.1.9

device profile

representation of a device in terms of its parameters, parameter assemblies and behaviour according to a device model that describes the data and behaviour of the device as viewed through a network, independent from any network technology;

NOTE 1 This is a definition from IEC 61915 which is extended by the addition of the device functional structure.

HEN STANDARD PREVIE

NOTE 2 The mapping onto a given network technology is the task of the communication profile.

3.1.10

entity

(standards.iteh.ai)

particular thing, such as a person, place, process, object, concept, association, or event

[dpANS X3.172, 1989].

IEC TR 62390:2005

https://standards.iteh.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-32649e9a7e6d/iec-tr-62390-2005

3.1.11

execution

process of carrying out a sequence of operations specified by an algorithm

3.1.12

functional element

entity of software or software combined with hardware, capable of accomplishing a specified function of a device

NOTE 1 A functional element has an interface, associations to other functional elements and functions.

NOTE 2 A functional element can be made out of function block(s), object(s) or parameter list(s).

3.1.13

function block

software functional element comprising an individual, named copy of a data structure and associated operations specified by a corresponding function block type

NOTE Adapted from IEC 61499.

3.1.14

input data

data transferred from an external source into a device, resource or functional element

3.1.15

instance

functional element comprising an individual, named copy of a data structure and associated operations specified by a corresponding functional element type

3.1.16

interface

shared boundary between two *functional units* defined by functional characteristics, signal characteristics, or other characteristics as appropriate

[IEV 351-11-18].

NOTE The interface typically includes the device parameters.

3.1.17

method

implementation of an operation, which specifies the algorithm or procedure associated with an operation

3.1.18

model

mathematical or physical representation of a system or a process, based with sufficient precision upon known laws, identification or specified suppositions

[IEV 351-11-20].

3.1.19

object

entity with a well-defined boundary and identity that encapsulates state and behaviour

[UML V1.5] iTeh STANDARD PREVIEW

NOTE State is represented by attributes and relationships, behaviour is represented by operations, methods, and state machines. An object is an instance of a class. 2003.1101.211

3.1.20

operation

<u>IEC TR 62390:2005</u>

service that can be requested from an object to drest behaviour 4cc4-b162-

[UML V1.5]

3.1.21

output data

data originating in a device, resource or functional element and transferred from them to external systems

3.1.22

parameter

data element that represents device information that can be read from or written to a device, for example, through the network or a local HMI

NOTE 1 Adapted from IEC 61915.

NOTE 2 A parameter is typically characterized by a parameter name, data type and access direction.

3.1.23

resource

- logical device
- module
- group of functional elements which has independent control of its operation, and which provides various services to application programs, including the scheduling and execution of algorithms

NOTE The RESOURCE defined in IEC 61131-3 is a programming language element corresponding to the resource defined above.

3.1.24

service

specific work performed by a device or object

3.1.25

type

hardware or software element which specifies the common attributes shared by all instances of the type

3.1.26

use case

class specification of a sequence of actions, including variants, that a system (or other entity) can perform, interacting with actors of the system

[UML V1.5]

3.1.27

variable

software entity that may take different values, one at a time

[ISO 2382]

NOTE The values of a variable as well as of a parameter are usually restricted to a certain data type.

Application Interoperability Profile REVIEW Abbreviations AIP

DCS Distributed Control System

Enterprise Resource Planning (standards.iteh.ai) **ERP**

FBD Function block Diagram IEC TR 62390:2005

Human Machine/Interfacech.ai/catalog/standards/sist/24bf7965-1bfa-4ec4-b162-HMI

32649e9a7e6d/jec-tr-62390-2005

H/W Hardware

I/O Input/Output

MES Manufacturing Execution System

OMG Object Management Group

S/W Software

UML Unified Modeling Language URL Universal Resource Locator

XML Extensible Markup Language

Guideline overview

The device profile guideline

- presents a short introduction to the entire scope of profiles;
- specifies the subset which is the focus of this guideline;
- introduces a general structural view to a device.

A sequence of six profile definition steps is proposed to the profile writer groups to develop the necessary information for a device profile. This is recorded in a profile template, which is introduced in a corresponding clause. The profile template is to be collected in an electronically readable form and in a printed human readable document.