AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM

Standard Practice for Measuring Cost Risk of Buildings and Building Systems¹

This standard is issued under the fixed designation E 1946; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This practice establishes a procedure for measuring cost risk for buildings and building systems, using the Monte Carlo simulation technique as described in Guide E 1369.
- 1.2 A computer program is required for the Monte Carlo simulation. This can be one of the commercially available software programs for cost risk analysis, or one constructed by the user.

2. Referenced Documents

- 2.1 ASTM Standards:
- E 833 Terminology of Building Economics²
- E 1369 Guide for Selecting Techniques for Treating Uncertainty and Risk in the Economic Evaluation of Buildings and Building Systems²
- E 1557 Classification for Building Elements and Related Sitework UNIFORMAT II²

3. Terminology

3.1 *Definitions*—For definition of terms used in this guide, refer to Terminology E 833.

4. Summary of Practice

- 4.1 The procedure for calculating building cost risk consists of the following steps:
 - 4.1.1 Identify critical cost elements.
- 4.1.2 Eliminate interdependencies between critical elements.
 - 4.1.3 Select Probability Density Function.
 - 4.1.4 Quantify risk in critical elements.
 - 4.1.5 Create a cost model.
 - 4.1.6 Conduct a Monte Carlo simulation.
 - 4.1.7 Interpret the results.
 - 4.1.8 Conduct a sensitivity analysis.

5. Significance and Use

5.1 Building cost risk analysis (BCRA) provides a tool for building owners, architects, engineers, and contractors to measure and evaluate the cost risk exposures of their building

construction projects.³ Specifically, BCRA helps answer the following questions:

- 5.1.1 What are the probabilities for the construction contract to be bid above or below the estimated value?
 - 5.1.2 How low or high can the total project cost be?
 - 5.1.3 What is the appropriate amount of contingency to use?
- 5.1.4 What cost elements have the greatest impact on the building's cost risk exposure?
- 5.2 BCRA can be applied to a building project's contract cost, construction cost (contract cost plus construction change orders), and project cost (construction cost plus owner's cost), depending on the users' perspectives and needs. This practice shall refer to these different terms generally as "building cost."

6. Procedure

- 6.1 Identify Critical Cost Elements:
- 6.1.1 A building cost estimate consists of many variables. Even though each variable contributes to the total building cost risk, not every variable makes a significant enough contribution to warrant inclusion in the cost model. Identify the critical elements in order to simplify the cost risk model.
- 6.1.2 A critical element is one which varies up or down enough to cause the total building cost to vary by an amount greater than the total building cost's critical variation, and one which is not composed of any other element which qualifies as a critical element. This criterion is expressed as:

$$IF V_Y > V_{CRIT} \tag{1}$$

AND Y contains no other element X where $V_X > V_{CRIT}$

THEN Y is a critical element

where:

$$V_{Y} = (2)$$

 $\frac{\text{(Max. percentage variation of the element Y)} * (Y's anticipated cost)}{\text{Total Building cost}}$

 V_{CRIT} = Critical Variation of the Building Cost.

6.1.3 A typical value for the total building cost's critical variation is 0.5%⁴. By experience this limits the number of critical elements to about 20. A larger V_{CRIT} will lead to fewer

¹ This practice is under the jurisdiction of ASTM Committee E-6 on Performance of Buildings and is the direct responsibility of Subcommittee E06.81 on Building Economics.

Current edition approved April 10, 1998. Published June 1998.

² Annual Book of ASTM Standards, Vol 04.11.

³ This practice is based, in part, on the article, "Measuring Cost Risk of Building Projects," by Douglas N. Mitten and Benson Kwong, Project Management Services, Inc., Rockville, MD, 1996.

⁴ Curran, Michael W., "Range Estimating—Measuring Uncertainty and Reasoning With Risk," *Cost Engineering*, Vol 31, No. 3, March 1989.

NOTICE:¬This¬standard¬has¬either¬been¬superseded¬and¬replaced¬by¬a¬new¬version¬or discontinued.¬Contact¬ASTM¬International¬(www.astm.org)¬for¬the¬latest¬information.¬

∰ E 1946

critical elements and a smaller V_{CRIT} will yield more. A risk analysis with too few elements is over-simplistic. Too many elements makes the analysis more detailed and difficult to interpret. A BCRA with about 20 critical elements provides an appropriate level of detail. Review the critical variation used and the number of critical elements for a BCRA against the unique requirements for each project and the design stage. A higher critical variance resulting in fewer critical elements, is more appropriate at the earlier stages of design.

- 6.1.4 Arrange the cost estimate in a hierarchical structure such as UNIFORMAT II (Classification E 1557). Table 1 shows a sample project cost model based on a UNIFORMAT II Levels 2 and 3 cost breakdown. The UNIFORMAT II structure of the cost estimate facilitates the search of critical elements for the risk analysis. One does not need to examine every element in the cost estimate in order to identify those which are critical.
- 6.1.5 Starting at the top of the cost estimate hierarchy (that is, the Group Element level), identify critical elements in a downward search through the branches of the hierarchy. Conduct this search by repeatedly asking the question: Is it possible that this element could vary enough to cause the total building cost to vary, up or down, by more than its critical variation? Terminate the search at the branch when a negative answer is encountered. Examine the next branch until all branches are exhausted and the list of critical elements established. Table 1 and Fig. 1 show the identification of critical elements in the sample project using the hierarchical search technique.
- 6.1.6 In the sample project, Group Element Superstructure has an estimated cost of \$915,000 with an estimated maximum variation of \$275,000, which is more than \$50,000, or 0.5 % of the estimated total building cost. It is therefore a candidate for a critical element. However, when we examine the Individual Elements that make up Superstructure, we discover that Floor Construction has a estimated maximum variation of \$244,500, qualifying as a critical element; whereas Roof Construction could only vary as much as \$40,000, and does not qualify. Since Floor Construction is now a critical element, we would eliminate Superstructure, its parent, as a critical element.
- 6.1.7 Include overhead cost elements in the cost model, such as general conditions, profits, and escalation, and check for criticality as with the other cost elements. Consider time risk factors, such as long lead time or dock strikes for imported material, when evaluating escalation cost.
- 6.1.8 Contingency, as commonly used in the building cost estimates, includes both the change element and the risk element. The change element in contingency covers the additional cost due to incomplete design (design contingency) or construction change orders (construction contingency). The risk element in contingency covers the additional cost required to reduce the risk that the actual cost would be higher than the estimated cost. However, the risk element in contingency is rarely identified separately and usually included in either design or construction contingencies. When conducting BCRA, do not include the risk element in contingency cost since that will be an output of the risk analysis. Include design contingency only to the extent that the design documents are incomplete. Include construction contingency, which

represents the anticipated increase in the project cost for change orders beyond the signed contract value, if total construction cost, instead of contract cost, is used.

- 6.1.9 The sample project represents a BCRA conducted from the owner's perspective to estimate the construction contract value at final design. General conditions, profits, and escalation are identified as critical elements. Since the design documents are 100 % complete, there is no design contingency. The contingency in the cost element represents the risk element and is therefore eliminated from the cost model. There is no construction contingency in the model since this model estimates construction contract cost only. If total project cost is desired, add other project cost items to the cost model, such as construction contingency, design fees, and project management fees.
- 6.2 Eliminate Interdependencies Between Critical Elements:
- 6.2.1 The BCRA tool works best when there are no strong interdependencies between the critical elements identified. Highly interdependent variables used separately will exaggerate the risk in the total construction cost. Combine the highly dependent elements or extract the common component as a separate variable. For example, the cost for ductwork and the cost of duct insulation are interdependent since both depend on the quantity of ducts, which is a highly uncertain variable in most estimates. Combine these two elements as one critical element even though they both might qualify as individual critical elements. As another example, if a major source of risk is labor rate variance, then identify labor rate as a separate critical element and remove the cost variation associated with labor rates from all other cost elements.
- 6.2.2 In the sample project, a percentage escalation is treated as a separate cost element, instead of having the escalation embedded in each cost element. The escalations for all cost elements are highly correlated because they all depend on the general escalation rate in material and labor. Therefore the model is more accurate when taking escalation as a separate cost element. Treat escalation as a critical element if it causes the total cost to vary by more than 0.5 %.
 - 6.3 Select Probability Density Function (PDF):
- 6.3.1 Assign a PDF to each critical element to describe the variability of the element. Select the types of PDFs that best describe the data. These include, but are not restricted to, the normal, lognormal, beta, and triangular distributions. In the construction industry, one does not always have sufficient data to specify a particular distribution. In such a case a triangular distribution function has some advantages⁵. It is the simplest to construct and easiest to conceptualize by the team of design and cost experts. The triangular PDF assumes zero probability below the low estimate and above the high estimate, and the highest probability at the most likely estimate. Straight lines connect these three points in a probability density function, forming a triangle, thus giving the name triangular distribution.
- 6.3.2 Because the triangular distribution function is only an approximation, the low and high estimates do not represent the

⁵ Biery, Fred, Hudak, David, Gupta, Shishu, "Improving Cost Risk Analysis," *Journal of Cost Analysis*, Spring 1994.

∰ E 1946

TABLE 1 Sample Uniformat II Cost Model

ITEM		GROUP ELEMENT	INDIVIDUAL ELEMENT	GROUP ELEMENT	INDIVIDUAL ELEMENT	EST MAX/ VARIATION	
		OKOOF ELEMENT	INDIVIDONE ELEMENT	COST	COST	7/4/4///1014	
	A10	FOUNDATIONS		\$150,000		\$45,000	
A1010			Standard Foundations		\$100,000		
A1030	Δ20	BASEMENT CONSTRUCTION	Slab on Grade	\$70,000	\$50,000	\$30,000	
A2010	AZU	DAGEMENT CONSTRUCTIO	Basement Excavation	Ψ10,000	\$20,000	ψ50,000	
A2020			Basement Walls		\$50,000		
	B10	SUPERSTRUCTURE		\$915,000		\$275,000	
B1010			Floor Construction		\$815,000	\$244,500	
B1020	R20	EXTERIOR ENCLOSURE	Roof Construction	\$800,000	\$100,000	40,000 \$250,000	
B2010	D20	EXTERIOR ENGLOSORE	Exterior Walls	Ψ000,000	\$576.000	\$172,800	
B2020			Exterior Windows		\$204,000	\$102,000	
B2030			Exterior Doors		\$20,000	\$8,000	
	B30	ROOFING		\$54,000		\$20,000	
B3010	C10	INTERIOR CONSTRUCTION	Roof Coverings	\$240,000	\$54,000	\$72,000	*
C1010	C 10	INTERIOR CONSTRUCTION	Partitions	\$240,000	\$132,000	\$72,000 \$45,000	
C1020			Interior Doors		\$108,000	\$30,000	
	C20	STAIRS		\$95,000	,,	\$40,000	
C2010			Stair Construction		\$75,000		
C2020	000	INITEDIOD EINIOLIEO	Stair Finishes	#040.000	\$20,000	#000 000	
C3010	C30	INTERIOR FINISHES	Wall Finshes	\$916,000	\$148,000	\$300,000 \$45,000	
C3020			Floor Finishes		\$445,000	\$178,000	
C3030			Ceiling Finishes		\$323,000	\$129,200	
	D10	CONVEYING		\$380,000	, ,		
D1010			Elevators & Lifts		\$380,000	\$228,000	
D0040	D20	PLUMBING	Di li E	\$142,000	#70.000	\$45,000	
D2010 D2020			Plumbing Fxtures Domestic Water Distribution		\$70,000 \$30,000		
D2030			Sanitary Waste	43	\$22,000		
D2040			Rain Water Drainage		\$20,000		
	D30	HVAC	httnc://ctandardo	\$1,057,000	211	\$550,000	
D3010			Energy Supply	70100110	\$20,000	\$8,000	
D3020 D3030			Heat Generating Systems Cooling Generating Systems	•	\$80,000 \$275,000	\$30,000	
D3030			Distribution Systems	VICW	\$500,000	\$137,500 \$300,000	
D3050			Terminal & Package Units	, _ , ,	\$60,000	\$30,000	
D3060			Controls and Instrumentation		\$217,000	\$130,200	
D3070			System Testing & Balancing		\$20,000	\$10,000	
D 4040	D40	FIRE PROTECTION	ASTIVI L1940-90	\$270,000	#000 000	\$100,000	
D4010 D4020	https	://standards.iteh.ai/ca	Sprinklers Standpipes	d7a-ae6f-90	\$220,000 \$50,000	\$88,000 \$15,000	
D4020	D50	ELECTRICAL	отапирірез	\$985,000	Ψ30,000	\$500,000	
D5010			Electrical Service & Distribution	,	\$180,000	\$108,000	
D5020			Lighting & Branch Wiring		\$685,000	\$411,000	
D5030	010	OUTS DOED A DATION	Communication & Security	*	\$120,000	\$45,000	
G1030	G10	SITE PREPARATION	Site Earthwork	\$120,000	\$120,000	\$45,000	
9 1030	G20	SITE IMPROVEMENT	Site LaitHWOIK	\$800,000	\$120,000	\$450,000	
G2030	520	C I IVII I I O V LIVILIA	Pedestrian Paving	Ψ000,000	\$420,000	\$252,000	
G2050			Landscaping		\$380,000	\$228,000	*
	G30	SITE MECHANICAL UTILITIE		\$420,000		\$126,000	
G3010			Water Supply		\$120,000 \$120,000	\$40,000	
G3020 G3030			Sanitary Sewer Storm Sewer		\$120,000 \$140.000	\$42,000 \$46,000	
G3060			Fuel Distribution		\$40,000	\$20,000	
	G40	SITE ELECTRICAL UTILITIE		\$200,000		\$100,000	*
G4010			Electrical Distribution		\$100,000	\$45,000	
G4020			Site Lighting		\$25,000	\$15,000	
G4030			Site Communications & Security		\$75,000	\$42,000	-
<u> </u>		SUBTOTAL			\$7,729,000		
			GENERAL CONDITIONS		\$823,000	\$411,500	*
		SUBTOTAL			\$8,552,000		
			PROFITS (10 %)		\$855,200	\$427,600	*
		SUBTOTAL	FCCALATION (F 0/)		\$9,407,200	M400 4 1 1	
-		SUBTOTAL	ESCALATION (5 %)		\$470,360 \$9,877,560	\$188,144	<u> </u>
		CODIOIAL	CONTINGENCY (5 %)		\$493,878		
			- (/		\$10,371,438		
		TOTAL CONSTRUCTION CO					
			* Meets criteria for critical elements				

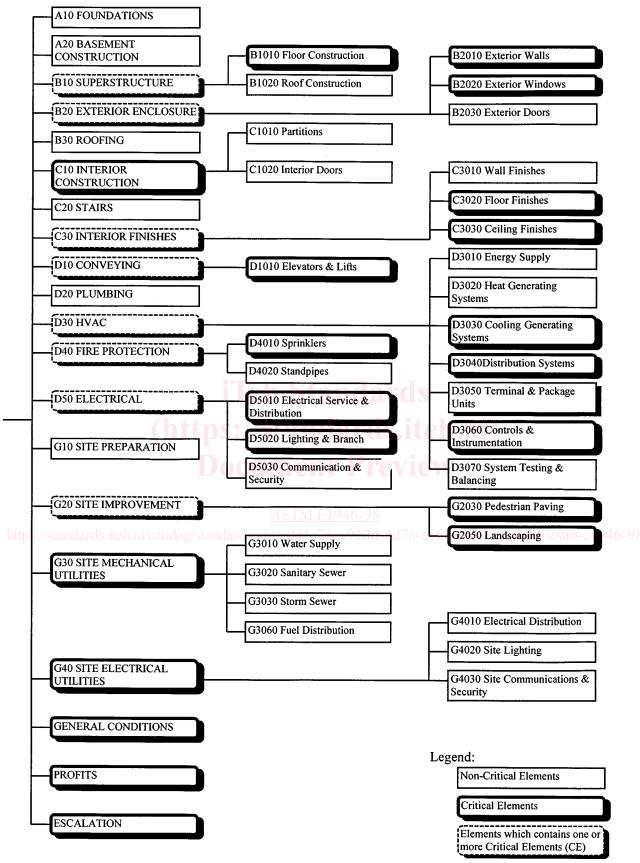


FIG. 1 Identification of Critical Elements in the Sample Project