INTERNATIONAL STANDARD

IEC 60950-1

Second edition 2005-12

Information technology equipment - Safety –

Part 1:

General requirements

an Srds iec/869fa18-63dd-4ce3-9aaf-e8649c89aade/iec-60950-1-2005

This **English-language** version is derived from the original **bilingual** publication by leaving out all French-language pages. Missing page numbers correspond to the French-language pages.

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

• IEC Web Site (<u>www.iec.ch</u>)

. Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchsub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued (publications (www.iec.ch/online_news/ justpub) is also available by email. Please contact the customer Service Centre (see below) for further information.

Customer Service Centre

If you have any questions regarding this publication or need further assistance, clease contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u>
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

IEC 60950-1

Second edition 2005-12

© IEC 2005 Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

CONTENTS

FC	REW	ORD	15
IN	TROD	UCTION	19
0	Princ	ciples of safety	19
	0.1	General principles of safety	19
	0.2	Hazards	21
	0.3	Materials and components	29
1	Gen	eral	31
	1.1	Scope	31
	1.2	Definitions	35
	1.3	General requirements	67
	1.4	General conditions for tests	69
	1.5	Components	79
	1.6	Power interface	93
	1.7	Markings and instructions	93
2	Prote	ection from hazards	111
	2.1	Protection from electric shock and energy nazards	111
	2.2	SELV circuits.	
	2.3	TNV circuits	133
	2.4	Limited current circuits	143
	2.5	Limited power sources	145
	2.6	Provisions for earthing and bonding	149
	2.7	Overcurrent and earth fault protection in primary circuits	165
	2.8	Safety interlocks	
	2.9	Electrical insulation	177
		Clearances, creepage distances and distances through insulation	
3	Wirir	ng, connections and supply	243
	3.1	Genera Genera	243
	3.2	Cornection to a mains supply	
	3.3	Wiring terminals for connection of external conductors	
	3.4	Disconnection from the mains supply	269
	3.5	Interconnection of equipment	275
4	Phys	sical requirements	279
	4.1	Stability	279
	4.2	Mechanical strength	281
	4.3	Design and construction	289
	4.4	Protection against hazardous moving parts	307
	4.5	Thermal requirements	309
	4.6	Openings in enclosures	317
	4.7	Resistance to fire	331
5	Elec	trical requirements and simulated abnormal conditions	349
	5.1	Touch current and protective conductor current	
	5.2	Electric strength	367
	5.3	Abnormal operating and fault conditions	375

6	Conr	nection to telecommunication networks	385
	6.1	Protection of telecommunication network service persons, and users of other equipment connected to the network, from hazards in the equipment	385
	6.2	Protection of equipment users from overvoltages on telecommunication networks	389
	6.3	Protection of the telecommunication wiring system from overheating	
7		nection to cable distribution systems	
•	7.1	General	
	7.2	Protection of cable distribution system service persons, and users of other equipment connected to the system, from hazardous voltages in the equipment	397
	7.3	Protection of equipment users from overvoltages on the cable distribution system	397
	7.4	Insulation between primary circuits and cable distribution systems	399
An	nex A	(normative) Tests for resistance to heat and fire	403
		(normative) Motor tests under abnormal conditions	409
An	nex C	(normative) Transformers	421
An	nex D	(normative) Measuring instruments for touch current tests	429
An	nex E	(normative) Temperature rise of a winding	433
An	nex F	(normative) Measurement of clearances and creepage distances	435
An	nex G	(normative) Alternative method for determining minimum clearances	451
An	nex H	(normative) Ionizing radiation	467
An	nex J	(normative) Table of electrochemical potentials (see 2.6.5.6)	469
An	nex K	(normative) Thermal controls	471
equ	uipme	(normative) Normal load conditions for some types of electrical business	
An	nex M	(normative) Criteria for telephone ringing signals	479
An	nex N	(normative) Impulse test generators	489
An	nex P	(normative) Normative references	493
An	nex Q	(normative) Voltage dependent resistors (VDRs)	501
An	nex R	(informative) Examples of requirements for quality control programmes	503
An	nex S	(informative) Procedure for impulse testing	509
An	nex T	(informative) Guidance on protection against ingress of water	513
An	nex U	(normative) Insulated winding wires for use without interleaved insulation	517
An	nex V	(normative) AC power distribution systems	523
An	nex W	(informative) Summation of touch currents	537
An	nex X	(informative) Maximum heating effect in transformer tests	543
An	nex Y	(normative) Ultraviolet light conditioning test	547
An	nex Z	(informative) Overvoltage categories (see 2.10.3.2 and Clause G.2)	549
An	nex A	A (normative) Mandrel test (see 2.10.5.8)	551
An	nex Bl	B (informative) Changes in the second edition	557

Bibliography	563
Index	589
Figure 2A – Test finger	115
Figure 2B – Test pin	117
Figure 2C – Test probe	117
Figure 2D - Accessibility of internal conductive parts	119
Figure 2E – Voltages in SELV circuits under single fault conditions	131
Figure 2F – Maximum voltages permitted after a single fault	135
Figure 2G – Test generator	143
Figure 2H – Examples of application of insulation	185
Figure 2J – Thermal ageing time	237
Figure 2K – Abrasion resistance test for coating layers	239
Figure 4A – Impact test using a steel ball	285
Figure 4B – Examples of cross-sections of designs of openings preventing vertical	
access	319
Figure 4C – Examples of louvre design	319
Figure 4D – Enclosure openings	321
Figure 4E – Typical bottom of a fire enclosure for partially enclosed component or assembly	323
Figure 4F – Baffle plate construction	
Figure 5A – Test circuit for touch current of single-phase equipment on a star TN or TT power supply system	
Figure 5B – Test circuit for touch current of three-phase equipment on a star TN or TT power supply system	353
Figure 6A – Test for separation between a telecommunication network and earth	389
Figure 6B – Application points of test voltage	391
Figure B.1 – Determination of arithmetic average temperature	
Figure C.1 – Determination of arithmetic average temperature	423
Figure D.1 – Measuring instrument	
Figure D.2 – Alternative measuring instrument	431
Figure F.1 – Narrow groove	437
Figure F.2 – Wide groove	437
Figure F.3 – V-shaped groove	437
Figure F.4 – Rib	437
Figure F.5 – Uncemented joint with narrow groove	439
Figure F.6 – Uncemented joint with wide groove	
Figure F.7 – Uncemented joint with narrow and wide grooves	
Figure F.8 – Narrow recess	441
Figure F.9 – Wide recess	441
Figure F.10 – Coating around terminals	
Figure F.11 – Coating over printed wiring	

Figure F.12 – Measurements through openings in enclosures	445	
Figure F.13 – Intervening, unconnected conductive part	445	
Figure F.14 – Solid insulating material	447	
Figure F.15 – Thin sheet insulating material	447	
Figure F.16 – Cemented joints in multi-layer printed board	447	
Figure F.17 – Component filled with insulating compound	449	
Figure F.18 – Partitioned bobbin	449	
Figure M.1 – Definition of ringing period and cadence cycle	481	
Figure M.2 – I _{TS1} limit curve for cadenced ringing signal	483	
Figure M.3 – Peak and peak-to-peak currents	483	
Figure M.4 – Ringing voltage trip criteria	487	
Figure N.1 – ITU-T impulse test generator circuit		
Figure N.2 – IEC 60065 impulse test generator circuit	491	
Figure S.1 – Waveform on insulation without surge suppressors and no breakdown	509	
Figure S.2 – Waveforms on insulation during breakdown without surge suppressors	511	
Figure S.3 – Waveforms on insulation with surge suppressors in operation	511	
Figure S.4 – Waveform on short-circuited surge suppressor and insulation		
Figure V.1 – Examples of TN-S power distribution systems	527	
Figure V.2 – Example of TN-C-S power distribution system	529	
Figure V.3 – Example of TN-C power distribution system	529	
Figure V.4 – Example of single-phase, three-wire TN-C power distribution system	531	
Figure V.5 – Example of three line and neutral TT power distribution system	531	
Figure V.6 – Example of three line T power distribution system	533	
Figure V.7 – Example of three line (and neutral) IT power distribution system	533	
Figure V.8 – Example of three line IT power distribution system	535	
Figure W.1 – Touch current from a floating circuit	537	
Figure W.2 – Touch current from an earthed circuit	539	
Figure W.3 – Summation of touch currents in a PABX	539	
Figure AA.1 - Mandrel		
Figure AA.2 - Initial position of mandrel	553	
Figure AA.3 – Final position of mandrel	553	
Table 1A – Voltage ranges of SELV and TNV circuits	51	
Table 1B – Equivalence of flammability classes	59	
Table 1C – Capacitor ratings according to IEC 60384-14	83	
Table 1D – Informative examples of application of capacitors	85	
Table 2A – Distance through insulation of internal wiring	121	
Table 2B – Limits for power sources without an overcurrent protective device	147	
Table 2C – Limits for power sources with an overcurrent protective device	147	

Table 2D – Minimu	ım size of protective bonding conductors	155
Table 2E – Test du	uration, a.c. mains supplies	157
	ative examples of protective devices in single-phase equipment or	169
Table 2G – Informa	ative examples of protective devices in three-phase equipment	169
Table 2H – Examp	les of application of insulation	181
Table 2J – AC mai	ns transient voltages	197
	rm clearances for insulation in primary circuits and between primary	
Table 2L – Additio	nal clearances in primary circuits	201
Table 2M – Minimu	um clearances in secondary circuits	203
Table 2N – Minimu	ım creepage distances	213
Table 2P – Tests f	or insulation in non-separable layers	221
Table 2Q – Minimu	um separation distances for coated printed boards	231
Table 2R – Insulat	ion in printed boards	233
	of cables and conduits for equipment having a rated current not	253
Table 3B – Sizes o	of conductors	257
Table 3C – Physic	al tests on power supply cords	261
Table 3D – Range	of conductor sizes to be accepted by terminals	265
Table 3E – Sizes of conductors	of terminals for mains supply conductors and protective earthing	267
Table 4A – Minimu	ım property retention limits after UV exposure	301
Table 4B – Tempe	rature limits, materials and components	313
Table 4C – Touch	temperature limits	315
Table 4D - Size a	nd spacing of openings in metal bottoms of fire enclosures	327_2
Table 4E - Summ	ary of material Hammability requirements	347
Table 5A – Maxim	um/current	357
Table 5B – Test vo	Itages for electric strength tests based on peak working voltages Pa	art 1 371
Table 5B — Test vo	Itages for electric strength tests based on peak working voltages Pa	art 2 373
Table 5C – Test vo	oltages for electric strength tests based on required withstand volta	ages . 375
Table 5D - Tempe	rature limits for overload conditions	383
Table B.1 – Tempe	erature limits for motor windings (except for running overload test).	411
Table B.2 – Permit	tted temperature limits for running overload tests	413
Table C.1 – Tempe	erature limits for transformer windings	423
Table F.1 – Value	of X	435
Table G 1 – AC ma	ains transient voltages	453

463
469
491
505
507
515
519
519
545
549
/iec-60950-1-2005

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INFORMATION TECHNOLOGY EQUIPMENT – SAFETY –

Part 1: General requirements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards. Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60950-1 has been prepared by IEC technical committee 108: Safety of electronic equipment within the field of audio/video, information technology and communication technology.

This second edition of IEC 60950-1 cancels and replaces the first edition of IEC 60950-1, issued in 2001, and constitutes a technical revision. The principal changes in this edition as compared with the first edition of IEC 60950-1 are given in Annex BB, including a list of changed subclause, table and figure numbers.

The text of this standard is based on the following documents:

FDIS	Report on voting
108/135A/FDIS	108/147/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

IEC 60950-1 includes the basic requirements for the safety of information technology equipment.

Additional parts of IEC 60950-1 will cover specific safety requirements for information technology equipment having limited applications or having special features as follows:

Part 21: Remote feeding (published);

Part 22: Equipment installed outdoors (planned);

Part 23: Large data storage equipment (planned);

Except for notes, all text within a normative figure, or in a box under a normative table, is also normative. Text with a superscript reference is linked to a particular item in the table. Other text in a box under a table applies to the whole table

Informative annexes and text beginning with the word "NOTE" are not normative. They are provided only to give additional information.

"Country" notes are also informative but call attention to requirements that are normative in those countries.

In this standard, the following print types are used:

- Requirements proper and normative annexes: roman type.
- Compliance statements and test specifications: italic type.
- Notes in the text and in tables: smaller roman type.
- Terms that are defined in 1.2; SMALL CAPITALS.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed;
- withdrawn;
- · replaced by a revised edition, or
- amended.

INTRODUCTION

0 Principles of safety

The following principles have been adopted by technical committee 108 in the development of this standard.

These principles do not cover performance or functional characteristics of equipment.

Words printed in SMALL CAPITALS are terms that are defined in 1.2 of this standard.

0.1 General principles of safety

It is essential that designers understand the underlying principles of safety requirements in order that they can engineer safe equipment.

These principles are not an alternative to the detailed requirements of this standard, but are intended to provide designers with an appreciation of the basis of these requirements. Where the equipment involves technologies and materials or methods of construction not specifically covered, the design of the equipment should provide a level of safety not less than those described in these principles of safety.

Designers shall take into account not only normal operating conditions of the equipment but also likely fault conditions, consequential faults, foreseeable misuse and external influences such as temperature, altitude, pollution, moisture, overvoltages on the MAINS SUPPLY and overvoltages on a TELECOMMUNICATION NETWORK or a CABLE DISTRIBUTION SYSTEM. Dimensioning of insulation spacings should take account of possible reductions by manufacturing tolerances or where deformation could occur due to handling, shock and vibration likely to be encountered during manufacture, transport and normal use.

The following priorities should be observed in determining what design measures to adopt:

- where possible, specify design criteria that will eliminate, reduce or guard against hazards;
- where the above is not practicable because the functioning of the equipment would be impaired, specify the use of protective means independent of the equipment, such as personal protective equipment (which is not specified in this standard);
- where neither of the above measures is practicable, or in addition to those measures, specify the provision of markings and instructions regarding the residual risks.

There are two types of persons whose safety needs to be considered, USERS (or OPERATORS) and SERVICE PERSONS.

USER is the term applied to all persons other than SERVICE PERSONS. Requirements for protection should assume that USERS are not trained to identify hazards, but will not intentionally create a hazardous situation. Consequently, the requirements will provide protection for cleaners and casual visitors as well as the assigned USERS. In general, USERS

should not have access to hazardous parts, and to this end, such parts should only be in SERVICE ACCESS AREAS or in equipment located in RESTRICTED ACCESS LOCATIONS.

When USERS are admitted to RESTRICTED ACCESS LOCATIONS they shall be suitably instructed.

SERVICE PERSONS are expected to use their training and skill to avoid possible injury to themselves and others due to obvious hazards that exist in SERVICE ACCESS AREAS of the equipment or on equipment located in RESTRICTED ACCESS LOCATIONS. However, SERVICE PERSONS should be protected against unexpected hazards. This can be done by, for example, locating parts that need to be accessible for servicing away from electrical and mechanical hazards, providing shields to avoid accidental contact with hazardous parts, and providing labels or instructions to warn personnel about any residual risk.

Information about potential hazards can be marked on the equipment or provided with the equipment, depending on the likelihood and severity of injury, or made available for SERVICE PERSONS. In general, USERS shall not be exposed to hazards likely to cause injury, and information provided for USERS should primarily aim at avoiding misuse and situations likely to create hazards, such as connection to the wrong power source and replacement of fuses by incorrect types.

MOVABLE EQUIPMENT is considered to present a slightly increased risk of shock, due to possible extra strain on the supply cord leading to rupture of the earthing conductor. With HAND-HELD EQUIPMENT, this risk is increased; wear on the cord is more likely, and further hazards could arise if the units were dropped TRANSPORTABLE EQUIPMENT introduces a further factor because it can be used and carried in any orientation; if a small metallic object enters an opening in the ENCLOSURE it can move around inside the equipment, possibly creating a hazard.

0.2 Hazards

Application of a safety standard is intended to reduce the risk of injury or damage due to the following:

- https://stelectric.shock,
 - energy related hazards;
 - fire;
 - heat related hazards,
 - mechanical hazards;
 - radiation;
 - chemical hazards.

0.2.1 Electric shock

Electric shock is due to current passing through the human body. The resulting physiological effects depend on the value and duration of the current and the path it takes through the body. The value of the current depends on the applied voltage, the impedance of the source and the impedance of the body. The body impedance depends in turn on the area of contact, moisture in the area of contact and the applied voltage and frequency. Currents of approximately half a milliampere can cause a reaction in persons in good health and may cause injury indirectly due to involuntary reaction. Higher currents can have more direct effects, such as burn or muscle tetanization leading to inability to let go or to ventricular fibrillation.

Steady state voltages up to 42,4 V peak, or 60 V d.c., are not generally regarded as hazardous under dry conditions for an area of contact equivalent to a human hand. Bare parts that have to be touched or handled should be at earth potential or properly insulated.

Some equipment will be connected to telephone and other external networks. Some TELECOMMUNICATION NETWORKS operate with signals such as voice and ringing superimposed on a steady d.c. supply voltage; the total may exceed the values given above for steady-state voltages. It is common practice for the SERVICE PERSONS of telephone companies to handle parts of such circuits bare-handed. This has not caused serious injury, because of the use of cadenced ringing and because there are limited areas of contact with bare conductors normally handled by SERVICE PERSONS. However, the area of contact of a part accessible to the USER, and the likelihood of the part being touched, should be further limited (for example, by the shape and location of the part).

It is normal to provide two levels of protection for users to prevent electric shock. Therefore, the operation of equipment under normal conditions and after a single fault, including any consequential faults, should not create a shock hazard. However, provision of additional protective measures, such as protective earthing or SUPPLEMENTARY INSULATION, is not considered a substitute for, or a relief from properly designed BASIC INSULATION.

Harm may result from:

Contact with bare parts normally at HAZARDOUS VOLTAGES.

Breakdown of insulation between parts normally at HAZARBOUS VOLTAGES and accessible conductive parts.

Examples of measures to reduce risks: 50-1-2005

Prevent USER access to parts at HAZARDOUS VOLTAGES by fixed or locked covers, SAFETY INTERLOCKS, etc. Discharge accessible capacitors that are at HAZARDOUS VOLTAGES.

Provide BASIC INSULATION and connect the accessible conductive parts and circuits to earth so that exposure to the voltage which can develop is limited because overcurrent protection will disconnect the parts having low impedance faults within a specified time; or provide a metal screen connected to protective earth between the parts, or provide DOUBLE INSULATION or REINFORCED INSULATION between the parts, so that breakdown to the accessible part is not likely to occur.