TECHNICAL REPORT

IEC TR 61292-5

First edition 2004-07

Optical amplifiers –

Part 5: Polarization mode dispersion parameter – General information **iTeh STANDARD PREVIEW**

(standards.iteh.ai)

<u>IEC TR 61292-5:2004</u> https://standards.iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld-608ffl42975e/iec-tr-61292-5-2004

Reference number IEC/TR 61292-5:2004(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

- IEC Web Site (<u>www.iec.ch</u>)
- Catalogue of IEC publications

The on-line catalogue on the IEC web site (<u>www.iec.ch/searchpub</u>) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published standards.iteh.ai)

This summary of recently issued publications (<u>www.iec.ch/online_news/justpub</u>) is also available by email. Please contact the Customer Service Centre (see below) for further informationC TR 61292-5:2004

https://standards.iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld-Customer Service Centre 42975e/iec-tr-61292-5-2004

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: custserv@iec.ch Tel: +41 22 919 02 11 Fax: +41 22 919 03 00

TECHNICAL REPORT

IEC TR 61292-5

First edition 2004-07

Optical amplifiers –

Part 5: Polarization mode dispersion parameter – General information iTeh STANDARD PREVIEW

(standards.iteh.ai)

<u>IEC TR 61292-5:2004</u> https://standards.iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld-608ffl42975e/iec-tr-61292-5-2004

 $\ensuremath{\mathbb{C}}$ IEC 2004 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

Μ

For price, see current catalogue

CONTENTS

FOREWORD

4	0	_	F		
I	Scope				
2	Normative references				
3	Acronyms and abbreviations				
4	Gene	ral Information	6		
	4.1	Principal states of polarization and mode coupling	6		
	4.2	Differential group delay and polarization mode dispersion	6		
5	Test	Fest method calculations			
6	Measurement issues				
	6.1	Source degree of polarization and amplified spontaneous emission	7		
	6.2	The use of a broadband source	9		
	6.3	Coherence interference effects and multiple path interferences	9		

Annex A (informative)	Applicability of various PMD test methods to different	
applications		1

Bibliography..... iTeh STANDARD PREVIEW 12 (standards.iteh.ai)

IEC TR 61292-5:2004 https://standards.iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld-608ffl42975e/iec-tr-61292-5-2004

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL AMPLIFIERS –

Part 5: Polarization mode dispersion parameter – General information

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- https://standards.iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a Technical Report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 61292-5, which is a Technical Report, has been prepared by subcommittee 86C: Fibre optic systems and active devices, of IEC technical committee 86: Fibre optics.

The text of this Technical Report is based on the following documents:

Enquiry draft	Report on voting
86C/579A/DTR	86C/608/RVC

Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table.

IEC 61292 consists of the following parts, under the new general title Optical amplifiers:

- Part 1: Parameters of amplifier components
- Part 2: Theoretical background for noise figure evaluation using the electrical spectrum analyzer
- Part 3: Classification, characteristics and applications.
- Part 4: Maximum permissible optical power for the damage-free and safe use of optical amplifiers, including Raman amplifiers¹⁾
- Part 5: Polarization mode dispersion parameter General information

Future standards in this series will carry the new general title as cited above. Titles of existing standards in this series will be updated at the time of the next edition.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended. **iTeh STANDARD PREVIEW**

A bilingual version of this publication may be issued at a later date.

<u>IEC TR 61292-5:2004</u> https://standards.iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld-608ff142975e/iec-tr-61292-5-2004

¹⁾ To be published.

OPTICAL AMPLIFIERS –

Part 5: Polarization mode dispersion parameter – General information

1 Scope

This part of IEC 61292, which is a Technical Report, applies to all commercially available optical amplifiers (OAs) including those using fibres (OFAs), semiconductors (SOAs), and waveguides (POWA), as classified in IEC 61292-3.

This Technical Report presents general information about polarization mode dispersion (PMD), related to the application of the two commonly used methods to test PMD in OAs, the Jones matrix eigenanalysis (JME) and the Poincaré sphere analysis (PSA), which have been demonstrated to be formalistically equivalent $[4,5]^{2}$.

This report is complementary to the International Standards describing the JME procedure (IEC 61290-11-1) and the PSA procedure (IEC 61290-11-2).

2 Normative references STANDARD PREVIEW

The following referenced documents are indispensable for the understanding of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

https://standards.iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld-

IEC 61290-11-1, Optical amplifier test methods - 1 Part - 1904: Polarization mode dispersion – Jones matrix eigenanalysis method (JME)

IEC 61290-11-2, Optical fibre amplifier test methods – Part 11-2: Polarization mode dispersion – Poincaré sphere analysis method ³)

IEC 61292-3, Optical amplifiers – Part 3: Classification, characteristics and applications

3 Acronyms and abbreviations

- ASE amplified spontaneous emission
- BBS broadband source
- DGD differential group delay
- DOP degree of polarization
- JME Jones matrix eigenanalysis
- OA optical amplifier
- OFA optical fibre amplifier
- OSA optical spectrum analyser
- PDG polarization dependent gain
- PDL polarization dependent loss

²⁾ Numbers in brackets refer to the Bibliography.

³⁾ To be published.

PMD	polarisation mode dispersion
PMF	polarization-maintaining fibre
POWA	planar optical waveguide amplifier
PSA	Poincaré sphere analysis
PSP	principal states of polarization
RBW	resolution bandwidth
RMS	root mean square
SMSR	side mode suppression ratio
SOA	semiconductor optical amplifier
SOP	state of polarization
TLS	tuneable laser source

4 General Information

PMD refers to how the polarized light and in particular the principal states of polarization (PSPs) from a short pulse of a narrowband light source are modified when going through a device such as an OA. This process is mathematically explained by the concepts of polarization transfer function, the Jones vector and the polarization dispersion matrix, the Stokes vector and the Poincaré sphere, the PSPs and their mode coupling, the polarization dispersion vector and the differential group delay (DGD).

iTeh STANDARD PREVIEW

The following clauses will discuss some of these concepts as specifically applied to OAs. (standards.iten.al)

4.1 Principal states of polarization and mode coupling

IEC TR 61292-5:2004

OAs are usually defined by dat combination of optical representation of optical representation of optical representation of the active gain medium (see IEC 61292-3).

Some components have a deterministic behaviour while others behave stochastically, depending on their complexity and design. An optical fibre is deterministic if its length is short or if its birefringence axis is fixed, such as in the case of a polarization-maintaining fibre (PMF). The fibre will have a stochastic behaviour if it has a long length such as the fibre installed in cable plant. The length from which the fibre behaves stochastically is still under investigation.

Most OAs are expected to behave in semi-random mode coupling.

4.2 Differential group delay and polarization mode dispersion

In OAs, the DGD may vary as a function of wavelength (or frequency) even if this variation is smooth, small or sometimes predictable. In that case, the concept of PMD expressed as the RMS value or average value of the variation of the DGD as a function of wavelength (or optical frequency) and the concept of maximum value of that DGD variation can be used. For OAs the DGD and PMD are reported in ps.

In OAs, PMD together with polarization dependent loss (PDL) and polarization dependent gain (PDG) may introduce waveform distortion, leading to unacceptable bit error rate increase. Figure 1 illustrates the case where at the output of the DUT the bits are not only broadened (in absence of PDL/PDG) but also distorted (in presence of PDL/PDG). In presence of PDL, there is a loss of degree of polarization (DOP) for one PSP.

Key

- t time
- z direction of propogation along the fibre

Figure 1 – Effect of PMD on transmission of an information bit pulse in a device

5 Test method calculations **TANDARD PREVIEW**

The mathematical formulation, as well as examples of calculation of JME and PSA, are found in IEC 61290-11-1 and IEC 61290-11-2, respectively.

6 Measurement^Hissues^{1/standards.}iteh.ai/catalog/standards/sist/96a7243e-22bb-42ae-8fld-608ff142975e/iec-tr-61292-5-2004

The following clauses pertain specifically to PMD measurement issues for OAs

6.1 Source degree of polarization and amplified spontaneous emission

The test methods require a polarized signal at the input of the polarimeter. Although the test source is highly polarized, the DOP at the output of the OA may be significantly reduced by the unpolarized amplified spontaneous emission (ASE).

The source DOP and measured signal DOP should be at least 25 % within the optical bandwidth of the SOP measurement. This is of particular concern when using a tuneable laser source (TLS) without a tracking optical filter at the OA output, because the total ASE power out of the OA, i.e. the ASE spectrum integrated over all wavelengths, impinges on the photodetectors whatever the selected wavelength. In this case, proper saturation conditions must be ensured in order for the DOP at the output port of the DUT to be high enough, e.g. >30 %, for accurate measurement.

Figure 2 shows a typical OFA output spectrum from a TLS input as viewed on an optical spectrum analyser (OSA) with a resolution bandwidth (RBW) of 0,5 nm (~65 GHz around 1 550 nm).