

Designation: E 1918 – 97

Standard Test Method for Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field¹

This standard is issued under the fixed designation E 1918; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the measurement of solar reflectance of various horizontal and low-sloped surfaces and materials in the field, using a pyranometer. The test method is intended for use when the sun angle to the normal from a surface is less than 45° .

2. Referenced Documents

2.1 ASTM Standards: ²

E 772 Terminology Relating to Solar Energy Conversion E 903 Test Method for Solar Absorptance, Reflectance, and

Transmittance of Materials Using Integrated Spheres

3. Terminology

3.1 *Definitions:*

3.1.1 *low-sloped surfaces*—surfaces with a slope smaller than 9.5° . The roofing industry has widely accepted a slope of 2:12 or less as a definition of low-sloped roofs. This corresponds to a slop of approximately 9.5° (16.7 %).

3.1.2 *pyranometer*—an instrument (radiometer) used to measure the total solar radiant energy incident upon a <u>surface</u> per unit time and unit surface area.

3.1.3 *solar energy*—the radiant energy originating from the sun. Approximately 99 % of solar energy lies between wavelengths of 0.3 to $3.5 \mu m$.

3.1.4 *solar flux*—for these measurements, the direct and diffuse radiation from the sun received at ground level over the solar spectrum, expressed in watts per square metre.

3.1.5 *solar reflectance*—the fraction of solar flux reflected by a surface.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *solar spectrum*—the solar spectrum at ground level extending from wavelength 0.3 to $3.5 \mu m$.

4. Summary of Test Method

4.1 A pyranometer is used to measure incoming and reflected solar radiation for a uniform horizontal or low-sloped surface. The solar reflectance is the ratio of the reflected radiation to the incoming radiation.

5. Significance and Use

5.1 Solar reflectance is an important factor affecting surface and near-surface ambient air temperature. Surfaces with low solar reflectance (typically 30 % or lower), absorb a high fraction of the incoming solar energy which is either conducted into buildings or convected to air (leading to higher air temperatures). Use of materials with high solar reflectance may result in lower air-conditioning energy use and cooler cities and communities. The test method described here measures the solar reflectance of surfaces in the field.

6. Apparatus

6.1 Sensor—A precision spectral pyranometer (PSP) sensitive to radiant energy in the 0.28–2.8 µm band is recommended. A typical pyranometer yields a linear output of ± 0.5 % between 0 and 1400 W·m⁻² and a response time of one s. Specific characteristics can be obtained based on calibration by the manufacturer of the pyranometer. Other suitable pyranometers are discussed in Zerlaut.³ The double-dome design of the PSP minimizes the effects of internal convection resulting from tilting the pyranometer at different angles. For this reason, the PSP is especially suitable for this test, since measurement of solar reflectivity requires the apparatus to alternatively face up and down.

6.2 *Read-Out Instrument*—The analog output from the pyranometer is converted to digital output with a readout meter (such as EPLAB Model 455 Instantaneous Solar Radiation Meter) that has an accuracy of better than ± 0.5 % and a resolution of 1 W·m⁻². The meter shall be scaled to the sensitivity of the specific PSP by the manufacturer of the pyranometer. Alternatively, a precision voltmeter can be used.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This test method is under the jurisdiction of ASTM Committee D08 on Roofing and Waterproofing and is the direct responsibility of Subcommittee D08.18 on Nonbituminous Organic Roof Coverings.

Current edition approved Dec. 10, 1997. Published September 1998.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ G. Zerlaut, "Solar Radiation Instrumentation" in *Solar Resources*, R.L. Hulstrom, ed., MIT Press, Cambridge, MA, 1989, pp. 173-308.