International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX DY APODHAR OPFAHИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ ORGANISATION INTERNATIONALE DE NORMALISATION

Plain bearings — Thin-walled flanged half bearings — Dimensions, tolerances and methods of checking

Paliers lisses – Demi-coussinets minces à collerettes – Dimensions, tolérances et méthodes de contrôle

First edition – 1984-03-15Teh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6864:1984</u> https://standards.iteh.ai/catalog/standards/sist/df0d8b76-5f1f-4aa2-8771-7e1b8319a4a3/iso-6864-1984

Ref. No. ISO 6864-1984 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

'ANDARD PREVIEW iTeh ST International Standard ISO 6864 was developed by Technical Committee ISO/TC 123, Plain bearings, and was circulated to the member bodies in April 1982. iteh.ai)

It has been approved by the member bodies of the following countries:

	https://standard	s.iteh.ai/catalog/standards/sist/df0d8b76-5f1f-4aa2-8771-
Czechoslovakia	India	7e1b8319 Swede0 -6864-1984
Egypt, Arab Rep. of	Italy	United Kingdom
France	Poland	USA
Germany, F.R.	Romania	USSR

No member body expressed disapproval of the document.

Plain bearings — Thin-walled flanged half bearings — Dimensions, tolerances and methods of checking

1 Scope and field of application

This International Standard lays down the main dimensions and tolerances for thin-walled flanged half bearings used in reciprocating machinery. It is not expected that all flanged half bearings with the main dimensions listed will be available from stock but adoption of standard sizes should lead to economies in tooling costs.

The main dimensions and tolerances are fixed for a series of thin-walled flanged half bearings suitable for housings having inside diameters from 40 to 250 mm. Flanged half bearings for larger or smaller inside diameters are only rarely used.

This International Standard also lays down dimensions and tolerances for characteristics features of thin-walled flanged half bearings. The introduction of such features into a particular design is a decision that shall be made by the user in the light of his knowledge of the application.

Flanged half bearings are generally used in connection with half bearings without tlange according to ISO 3548.

Alternatively to serve as a flanged half bearing, it is admittedly possible to use a prefitted assembly of a half bearing without flange with two half thrust washers, the specifications of which should be agreed between user and manufacturer, taking acount of ISO 3548 and ISO 6526.

NOTE - All the dimensions and tolerances are expressed in millimetres unless otherwise indicated.

2 References

ISO 497, Guide to the choice of series to the use of preferred numbers and of series containing more rounded values of preferred numbers.

ISO 3548, Plain bearings – Thin-walled half bearings – Dimensions, tolerances and methods of checking.

ISO 4383, Plain bearings — Metallic multilayer materials for thin-walled plain bearings.

ISO 4384, Plain bearings – Hardness testing of bearing materials.984

ISO 6282, Thin-walled plain bearings and and site in a standards standards sist diodebro-5fl f-4aa2-8771-

7e1b8319a4a5/iso-6864-1984 ISO 6526, Plain bearings — Pressed bimetallic half thrust washers — Features and tolerances.

3 Definition

For the purpose of this International Standard, the following definition is applicable:

flanged bearing : A combination of a radial bearing (cylindrical radial part) with an axial bearing (flanges at the ends) (see figure 1).

Figure 1 — Flanged half bearing

4	Syr	nbols	$G_{\rm E}$ = wall thickness at the back of the groove
D_{L}	=	housing diameter	α = groove side angle
D_1	-	inside diameter of the bearing	r_1 = radius at the back of the groove
$D_{\rm bs}$	=	outside diameter of the bearing	r_2 = oil pocket radius
D_1	=	outside diameter of flange	G_{X} = distance between grooves and the flange axis.
Dat	=	diameter of the checking block bore	5 Main dimensions and tolerances
e _T	=	bearing wall thickness	All sharp edges should be free of burrs. If chamfers are desired, they should have an angle of 45°.
e ₁	=	flange thickness	5.1 Nominal dimensions
Ζ	=	distance between flanges	The nominal dimensions of housing (inside) diameter, inside
L_{L}	-	housing width	diameter and wall thickness are given in table 1.
L ₁	=	overall bearing width	The nominal overall width should be equal to the nominal distance between flanges plus two times the nominal wall thickness.
S _N	or	$S_{N1} + S_{N2} = nip$	
F	==	$F_1 = F_2$ = checking load, in newtons	5.2 Tolerance for the housing
$E_{\mathbf{X}}$	=	eccentricity	the case of housings made from materials having a high coeffi-
A	=	locating nick width https://standards.iteh.ai/catalog/stand	dimensional stability are involved, then the housing size may
B	=	locating nick length 7e1b8319a4a3	cordance with a grade 6 tolerance.
N_{D}	=	locating nick height	5.3 Tolerance for nip and wall thickness
Η	-	distance between nick and flange	The bearings that are the subject of this International Standard are thin and flexible and their outside diameter cannot be
h		height and width at transition between radial part and flange	measured by conventional means. The peripheral length is therefore usually measured by use of the checking method given in clause 10.
J	=	distance between nick and groove	It is not possible to specify the actual size of peripheral length in
Ε	=	notch recess width	precise application (for example factors such as housing rigidity
Nz	=	notch recess length	account).
G	=	notch recess height	However for bearings that are finished by machining on joint faces, the manufacturing tolerances on peripheral length should be in accordance with the values of the tolerance on
H_{D}	=	height of the joint face bore relief	measured nip S_N , (see figure 11) given in table 2.
P _D	=	depth of the joint face bore relief	The tolerance for wall thickness $e_{\rm T}$ depends on the fact whether the bearings inside diameter is subject to a final machining
eJ	=	wall thickness at the joint face	diameter is electroplated without further machining (i.e. "as
1	=	height of the flange relief	plated). The relevant tolerances are included in table 2.
l	=	depth of the flange relief	diameter of the bearing provided that they are not numerous.
G_{W}	, =	groove width	carried out in these areas.

Housing		Inside	diameters	, D _l , for w	vall thickn	ess, e _T				7	
	2,0	2,5	3,0	3,5	4,0	5,0	6,0	D_1		Z	
40	36	35						52	15	17	21
42	38	37						54	16	18	22
45	41	40						57	17	19	24
48	44	43						60	18	21	25
50	46	45						62	18	21	26
53	49	48						65	19	23	28
56	52	51						68	20	24	29
60	56	55						72	22	25	31
63	59	58						79	23	27	33
67		62	61					83	24	28	34
71		66	65					87	25	29	36
75		70	69					91	26	31	38
80		75	74					96	28	33	41
85		80	79					105	30	35	43
90			84	83				110	31	37	45
95			89	88				115	33	39	48
100			94	93				120	34	41	50
105			99	98				129	36	43	53
110			104	103				134	38	45	55
120	1	Teh	ST14A		RDI	PRFV	ZIRV	144	41	49	60
125				118	117			149	42	50	62
130			(star	123 r	S122 P	h.ai)		154	44	52	65
140			(Star	133	132			170	47	56	70
150				143	142			180	51	60	75
160				<u>1753 68</u>	<u>64:11524</u>			190	54	64	80
170	https	://standarc	s.iteh.ai/ca	talog/stand	ards/sist/d	0d8676-5	f1f-4aa2-8	771 ₂₀₀	57	68	84
180			7elt	8319a4a3	/iso-16264-	198470		210	60	72	89
190					182	180		220	64	76	94
200					192	190		230	67	80	99
210						200	198	250	70	83	103
220						210	208	260	73	87	108
240						230	228	280	80	95	118
250						240	238	290	83	99	123

Table 1 – Housing diameter, inside diameters, wall thicknesses, outside diameter of flange and distance between flanges

1) Based on the R' 40 series of preferred numbers (ISO 497)

Table 2 —	Tolerances fo	r measured	nip $S_{\rm N}$ and	wall thickne	ss e⊤
-----------	---------------	------------	---------------------	--------------	-------

Housing diameter D _L		Tolerance for S _N	Tolerance for e_{T}		
above	up to	$(S_{N max} - S_{N min})$	"as machined" bearing	"as plated" bearing	
_	45	0,030	0,008	0,012	
45	75	0,035	0,008	0,012	
75	110	0,040	0,010	0,015	
110	160	0,045	0,015	0,022	
160	200	0,050	0,015	0,022	
200	250	0,055	0,020	0,030	

NOTE - Closer tolerances should be subject to agreement between user and manufacturer.

5.4 Tolerances for distance between flanges, housing width, bearing width, flange thickness, and outside diameter of flange

Table 3 –	Tolerances for	distance	between	flanges,	housing v	width,	bearing	width,	flange t	thickness,
			and outsi	ide diam	eter of fla	ange				

Housing diameter $D_{\rm L}$			Tol	erance for		
above	up to	Z ^{1) 3)}	L_{L}	L ₁	e1 ^{2) 3)}	<i>D</i> ₁
_	75	+ 0,05 0	- 0,02 - 0,07	0 - 0,12		± 1
75	110	+ 0,07 0	0,02 0,07	0 - 0,12	0 0,05	
110	250	+ 0,07 0	- 0,02 - 0,10	0 - 0,20		± 1,5

1) In free state.

2) On the pressure loaded side (see 5.4.1).

3) The tolerances should not be added; they represent the permissible value functionnally required for each of the dimensions.

5.4.2 The flange outside diameter should be smaller than the diameter of the shoulder of the shaft.

5.5 Detailed features

5.5.1 Eccentric bore

In certain applications it may be necessary to use flanged half bearings with eccentric bores, i.e. the wall thickness of the half bearing decreases uniformly from the crown to the joint faces (see figure 2).

NOTE – The eccentricity E_x is characterized in a radial plane by the distance between the centre C_1 of the bearing outside surface and the centre C_2 of the bearing bore.

 $E_{\rm X}$ is determined by the difference in wall thickness between the crown and the joint faces. It is subject to agreement between user and manufacturer.

5.5.2 Free spread

Free spread is influenced by factors such as the lining material, its thickness and its physical properties, by the backing material and its properties, and by the operating temperature of the assembly. Since these features are not specified in this International Standard, it is not possible to specify free spread. However, free spread must in all circumstances remain positive and be such that after operation in the engine at normal conditions, a sufficient amount of free spread remains in the bearing to enable it to be refitted. The actual amount of free spread shall be the subject of agreement between manufacturer and user.

5.5.3 Locating nicks and notch recesses in the housing

When nicks are used for location, the dimensions of the locating nicks and notch recesses should be as shown in figure 3 and table 4.

Figure 3a - Locating nick

The difference H - h shall not be smaller than 2 mm in order to avoid the breaking of antifriction material when the bearing bore is machined. For the same reason, the dimension J shall not be smaller than 2 mm or the nick breaks into the oil groove.

Figure 3b - Notch recess in the housing

Table 4 — Dimensions of the locating nicks and notch recesses and tolerances for the distance from the locating nick t	to
the flange	

Housing	diameter							
	$\nu_{\rm L}$	Locating nick			Tolerance for	Notch recess		
above	up to	A	В	ND	Н	E	NZ	G
-	45	2,2 to 2,35	3 to 4	0,8 to 1,1		3,06 to 2,94	5,5 to 4,5	1,75 to 1,50
45	65	3,2 to 3,35	5 to 6	1 to 1,3	+ 0.15	4,06 to 3,94	8,5 to 7	2,15 to 1,75
65	85	4,2 to 4,35	5 to 6	1,2 to 1,5	0	5,07 to 4,93	10 to 8	2,60 to 2
85	120	5,2 to 5,35	6 to 7	1,4 to 1,7		6,07 to 5,93	12 to 9	3 to 2,25
120	200	6,2 to 6,35	8,5 to 10	1,5 to 2	+0.2	8,08 to 7,92	15,5 to 12	4 to 3
200	250	7,2 to 7,35	11,5 to 13	2 to 2,5	0	10,08 to 9,92	20 to 15	4,70 to 3,50

5.5.4 Reliefs

5.5.4.1 Joint face bore reliefs

Joint face bore reliefs are provided at both sides of the half bearing on the whole width. The relevant dimensions are given in table 5.

The dimension $H_{\rm D}$ is dependent upon the application and should be subject to agreement between user and manufacturer.

For guidance, it can be assumed that the dimension $H_{\rm D}$ is 1/7 of the inside diameter.

 Table 5 - Dimensions and tolerance of relief of joint face bores

Housing <i>L</i>	diameter L	Tolerance for	$P_{D} = e_{T} - e_{J}$
above	up to	5	
_	85	0 - 3	0,012 to 0,025
85	120	0 - 4	0,015 to 0,030
120	200		0,020 to 0,040
200	250	-6	0,030 to 0,055

Figure 4 — Joint face bore relief

5.5.4.2 Flange reliefs

Flange reliefs are provided at all joints faces (see figure 5, enlarged section A-A) as well as at all sliding surfaces edges (see figure 5, detail X).

Joint face relief (design at the option of the manufacturer)

facturer) Sliding surface relief (Design at the option of the manufacturer) Figure 5 — Flange reliefs

Table 6 — Dimensions and tolerances of the relief of the flanges

Housing	i ₁	/1	¹ 2	1 ₂	
above	+ 0,2 0	± 2	+ 0,3 0	± 0,5	
_	120	0,1	5,5	03	3
120	250	0,2	8	0,5	5

5.5.5 Transition between radial part and flange

Figure 6 shows typical examples of the transition region, the actual form used being dependent upon the manufacturing method and the ratio between wall thickness and flange thickness.

The transition between the radial part and flange must be within dimension h given in table 7 in order to avoid cracking.

The transition geometry must be adapted to the form of the shaft in order to avoid fouling of the fillet radius and of the housing inside diameter.

Table 7	 Minimum height	(and	width)
	of transition		

Housing diameter D _L		h min.
above	up to	
	120	2
120	250	3

5.5.6 Oil grooves and holes

5.5.6.1 Oil grooves and holes in the bore

The position of the annular groove and the oil hole (oil holes) is fixed in figure 7.

Figure 6 — Two types of transition between radial part and flange