International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX AND A POLAH OF A HUSALUN TO CTAH APT USALUN ORGANISATION INTERNATIONALE DE NORMALISATION

Rubber, vulcanized — Determination of tension fatigue

Caoutchouc vulcanisé - Détermination de la fatigue en traction

First edition - 1984-12-15

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 6943:1984</u> https://standards.iteh.ai/catalog/standards/sist/8825e213-3b38-489f-a893-6fcebbff15e2/iso-6943-1984

UDC 687.063 : 620.178.3

Ref. No. ISO 6943-1984 (E)

Descriptors : rubber, vulcanized rubber, tests, fatigue tests, tension tests, determination, fatigue life.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 6943 was prepared by Technical Committee ISO/TC 45, Rubber and rubber products.

> ISO 6943:1984 https://standards.iteh.ai/catalog/standards/sist/8825e213-3b38-489f-a893-6fcebbff15e2/iso-6943-1984

© International Organization for Standardization, 1984 •

Rubber, vulcanized – Determination of tension fatigue

Scope and field of application 1

This International Standard describes a method for the determination of the resistance of vulcanized rubbers to fatigue under repeated tensile deformations, the test piece size and frequency of cycling being such that there is little or no temperature rise. Under these conditions, failure results from the growth of a crack that ultimately severs the test piece.

The method is restricted to repeated deformations in which the test piece is relaxed to zero strain for part of each cycle. Analogous fatigue processes can occur under repeated deformations which do not pass through zero strain and also, in certain rubbers, under static deformation, but this International Standard does not apply to these conditionstandards.

The method is believed to be suitable for rubbers that have

reasonably stable stress-strain properties, at least after appride 3:1984SO 4648, Rubber, vulcanized -- Determination of dimensions of cycling, and that do not show/undue stress softening or set rds/sistof test pieces and products for test purposes. or highly viscous behaviour. Materials that do not meet these 0-6943-1984 criteria may present considerable difficulties from the points of view of both experiment and interpretation. For example, for a rubber that develops a large amount of set during the fatigue test, the test strain will be ill-defined and the fatigue life is likely to differ markedly under constant maximum load and constant maximum extension conditions; how the results for such a rubber should be interpreted, or compared with those for other rubbers, has not been established by basic work. As a general guide, a rubber for which the set determined in accordance with 8.5 and 9.2 exceeds 10 % is likely to fall into this category. Similar considerations apply with regard to other changes in elasticity behaviour during test.

A distinction should be made between this fatigue test and the flexometer tests described in ISO 4666/1 to 3, where fatigue breakdown occurs under the simultaneous action of stress and temperature.

Advantages over the de Mattia flex cracking and cut growth tests (see ISO 132 and ISO 133) include the following. The test yields quantitative results which do not depend on operator interpretation and which can be recorded automatically. The initial deformation is clearly defined and can readily be varied to suit different applications.

Great caution is necessary in attempting to relate standard test results to service performance since the comparative fatigue resistance of different vulcanizates can vary according to the test conditions used and to the basis by which the results are compared. Guidance on the selection of test conditions and on the interpretation of results is given in the annex.

References 2

ISO 37, Rubber, vulcanized - Determination of tensile stressstrain properties.

ISO 132, Vulcanized rubbers – Determination of resistance to flex cracking (De Mattia type machine).

ISO 133, Rubber, vulcanized – Determination of crack growth (De Mattia).

ISO 471, Rubber - Standard temperatures, humidities and times for the conditioning and testing of test pieces.

ISO 1826, Rubber, vulcanized — Time-interval between vulcanization and testing — Specification.

ISO 4661, Rubber - Preparation of test pieces.

ISO 4666. Rubber, vulcanized – Determination of temperature rise and resistance to fatigue in flexometer testing -

Part 1: Basic principles.

Part 2: Rotary flexometer.

Part 3: Compression flexometer.

Definitions 3

For the purpose of this International Standard the following definitions apply.

3.1 fatigue life: The number of cycles required to break a test piece repeatedly deformed to a prescribed tensile strain.

3.2 tension fatigue: Fracture, through crack growth, of a component or test piece subjected to a repeated tensile deformation.

4 Principle

Dumb-bell or ring test pieces are repeatedly deformed in simple extension until they fail by breaking. The test pieces are relaxed to zero strain for part of each cycle. The number of deformation cycles to failure, defined as the fatigue life, is determined as a function of the maximum strain and, if required, as a function of the maximum stress or strain energy density imposed during the test.

5 Apparatus

5.1 Fatigue testing machine

The fatigue testing machine shall provide a reciprocating motion at a frequency which shall normally be within the range 1 to 5 Hz.

For testing dumb-bell test pieces, the machine shall be provided with clamps that grip the test piece sufficiently firmly to prevent slippage, irrespective of the magnitude of the strain applied.

For testing ring test pieces, each station on the machine shall be provided with two pairs of rollers, one pair fixed to the body of the machine and the other to the reciprocating part. To minimize friction, the rollers shall be fabricated from stainless or chromium plated steel, well polished and fitted with free running ball races. The roller arrangement shall be such that the test pieces are held securely in place over the rollers throughout the test.

The stroke of the machine and the position of the fixed clamps or rollers shall be adjustable to provide a range of test strains. In all cases the test piece shall be relaxed to zero strain for part of each cycle.

The fixed clamps or rollers should preferably be fitted with contacts or other means of operating counters to register the an number of cycles to failure of each test piece.

If it is required to determine the maximum stress of the cycle, <u>SO 69</u> manual or automatic means for measurement of the load shall/stand be provided. Stress-strain properties and strain energy density <u>15e2</u>/ under test conditions can be determined for rings if automatic equipment for force-extension measurement is provided. Alternatively, and for dumb-bell test pieces, stress-strain properties can be separately determined using a conventional tensile testing machine.

5.2 Dies and cutters

All dies and cutters used shall be made and maintained in accordance with ISO 4661.

Since fatigue life is sensitive to flaw size, it is essential that the dies or cutters used for the preparation of test pieces be carefully maintained so that the cutting edges are sharp and free from nicks. Regular control tests, using an established rubber, should be made to check sharpness. Any oil shall be removed from the cutter after sharpening.

5.3 Marker

If a marker is used for marking the reference lines on dumb-bell test pieces it shall have two parallel edges. These shall be ground smooth and true, 0,05 to 0,10 mm wide at the edge and bevelled at an angle of not more than 15° .

The marking implement shall not damage the rubber surface.

5.4 Marking substance

The marking substance shall have no deleterious effect on rubber and shall be of contrasting colour.

5.5 Measuring instruments

The instrument for measuring the thickness of dumb-bell test pieces (and the axial thickness of ring test pieces) shall be in accordance with ISO 4648, consisting essentially of a micrometer dial gauge having a circular foot which does not extend beyond the surface of the rubber where the measurement is being taken, and applying a pressure of $22 \pm 5 \text{ kPa}^{1}$.

Vernier calipers, travelling microscope or other suitable means shall be provided for the measurement of other test piece dimensions. A calibrated cone is recommended for the measurement of the internal diameter and internal circumference of ring test pieces.

6 Test piece

6.1 Dimensions

A Standard test pieces shall be dumb-bells or rings having dimensions within the limits prescribed below. Any test piece showing irregularities or imperfections shall not be used.

6.1.1 Dumb-bell test piece

Dumb-bell test pieces and the dies with which they are cut shall be as shown in figure 1. The dies shall have the dimensions given in table 1. The reference length (the distance between the marked reference lines) shall be 25 mm for the type 1 test piece and 20 mm for the type 2 test piece. This length shall be equidistant from the ends of the central parallel-sided part of the test piece. The tabs may have beaded ends for location purposes.

 ${\sf NOTE}-{\sf The}$ dies are identical to those specified for type 1 and type 2 dumb-bell test pieces in ISO 37 for the determination of tensile stress-strain properties.

The preferred thickness for both types of dumb-bell shall be 1,5 \pm 0,2 mm. In any one dumb-bell, the thickness of the narrow part shall nowhere deviate by more than 2 % from the mean. If results from two sets of dumb-bells are being compared, the mean thicknesses of the sets shall be within 10 % of one another.

NOTE — Fatigue life depends on test piece thickness and it has been shown that at a thickness of 1,5 mm the life is least sensitive to change in this dimension. If required an alternative thickness of 2,0 \pm 0,2 mm, may be used provided it is recorded in the test report, but it may lead to different results.

Dumb-bells shall be cut from sheet by punching with a die using a single stroke of a press. The rubber shall be supported on a sheet of slightly yielding material (for example cardboard

^{1) 1} kPa - 1 kN/m²

or polyethylene) on a flat rigid surface; the region of the supporting sheet beneath the die shall be free from cuts or other imperfections. Care should be taken to ensure that the rubber is isotropic and free from built-in stresses (failure to meet either of these requirements can cause very marked variations in fatigue life); in cases where there is any doubt, check stress-strain and fatigue tests should be carried out using test pieces cut in different directions or from different locations on a sheet. Any sheet showing such imperfections shall be discarded unless anisotropy or "grain" effects are being investigated, when their extent and direction shall be specified and recorded in the test report.

6.1.2 Ring test piece

The standard ring test piece shall have a nominal internal diameter of 44,6 mm and external diameter of 52,6 mm giving a nominal radial width of 4 mm; the radial width shall nowhere deviate by more than 0,2 mm. The axial thickness shall be 1,5 \pm 0,2 mm and on any one ring the thickness shall deviate from the mean by no more than 2 %.

NOTE — With respect to the internal and external diameters and the tolerance on radial width, the standard ring test piece is identical to the normal-size ring test piece specified in ISO 37.

Alternative axial thicknesses and radial widths may be used, provided that they are recorded in the test report. These alternatives include an axial thickness of $2,0 \pm 0,2$ mm and the use of a ring of $2,0 \pm 0,2$ mm radial width and $3,0 \pm 0,2$ mm axial thickness, the latter being cut from 3 mm thick sheet or divided into two from 6 mm 3.198 thick sheet. Note that a change in dimensions may change the stress distribution within the cross-section of the deformed test piece and therefore may lead to different results. Comparisons should only be 0.694 made between test pieces having the same dimensions.

Rings shall be produced from a sheet by either die-stamping or cutting with revolving knives; in the latter case, water may be used as a lubricant but contact should be minimized and the rubber allowed to dry thoroughly prior to test. A substrate shall be used, as for dumb-bells, and similar care should be taken to ensure that the sheet is isotropic and homogeneous.

6.2 Number of test pieces

The number of test pieces required for the determination of fatigue life at each test strain depends on the purpose of the test and on the inherent variability of the materials being examined. At least five test pieces shall be tested in the case of routine quality control measurements on materials that are already well characterized. For other purposes and particularly for rubbers that show large variability more test pieces may be required to obtain a representative result (see 9.1).

Additional test pieces may be required for the determination of stress, strain energy density, and set developed during cycling.

6.3 Storage and conditioning

For all test purposes the minimum time between vulcanization and testing shall be 16 h in accordance with ISO 1826: the maximum time shall be 4 weeks unless special circumstances (such as investigation of ageing effects) otherwise dictate. Test sheets and test pieces shall be stored in the dark at standard laboratory temperature (see ISO 471). They shall not, at any time, be allowed to come into contact with test sheets and test pieces of a different composition. This is necessary in order to prevent additives which may affect fatigue life, such as antioxidants, from migrating from one vulcanizate into adjacent vulcanizates.

For tests at standard laboratory temperature, test pieces shall be conditioned at this temperature for a minimum of 3 h (in accordance with ISO 471) immediately before testing. For tests at other temperatures, test pieces shall be conditioned at the test temperature immediately before testing for sufficient period to reach temperature equilibrium.

For tests intended to be comparable, the duration and temperature of storage, and the duration and temperature of conditioning shall be the same.

7 Test conditions

7.1 Test strains

The choice and number of test strains will depend on the particular project or application. For test pieces relaxed to zero strain, the test strain is the initial maximum strain imposed during cycling, and for many purposes it will be in the range 50 % to 125 % elongation. Lower or higher strains may be used, 18825e213-3b38-489Fa893-

It is strongly recommended that tests are conducted at several test strains so that the dependence of fatigue life on strain, and if required on the maximum stress or maximum strain energy density imposed during cycling, can be determined. For this purpose at least four test strains should be used. The strain intervals required will depend on the range covered and the rate at which the fatigue life varies with strain within that range; as a general guide intervals of 25 % are suggested, but narrower or wider intervals may be used. It is recommended that the test at the highest maximum strain is carried out first and then the test strain be progressively lowered.

The test piece shall return to zero strain for part of each cycle.

7.2 Test frequency

The frequency of cycling shall normally be in the range 1 to 5 Hz, but other frequencies may be used for particular purposes.

For tests intended to be comparable, the frequency shall be the same.

 ${\sf NOTE}-{\sf It}$ has been found that fatigue life is not markedly affected by frequency over the range 1 to 5 Hz.

7.3 Test temperature

Tests shall normally be carried out at standard laboratory temperature. Other temperatures may be used if appropriate for

particular applications and these should be selected from the list given in ISO 471.

NOTE - Caution is required in the use of extreme temperature; for example at high temperatures, set developed during cycling can be very extensive and may markedly influence the results.

7.4 Test atmosphere

The test shall not normally be made in a room which contains any apparatus that generates ozone, such as a fluorescent lamp, or which for any other reason has an ozone content above that in normal indoor air. The motor used to drive the test machine shall be of a type that does not generate ozone.

NOTE - Periodic checks are advised in order to ensure the ambient ozone concentration is preferably less than 1 part by volume per 100 million parts of air. When these conditions are observed, the life should not be significantly affected by the ozone concentration except at strains near to or below the mechanical fatigue limit of the material under test (see the annex).

8 Procedure

iTeh STANDA

8.1 Marking of dumb-bell test pieces

Mark each test piece with reference lines using a marker which satisfies the conditions described in 5.3 and 5.4. The test piece shall be marked in the unstrained state and shall not have been strained prior to marking. The reference lines shall not exceed 0,5 mm in width and shall be marked on the narrow part of the test piece at right angles to its edge and equidistant from its centre.

8.2 Measurement of test pieces

8.2.1 **Dumb-bell test pieces**

Measure the thickness of each test piece at its centre and at each end of the reference length using the thickness gauge described in 5.5. The width of the test piece shall be assumed to be equal to the width between the cutting edges of the narrow central part of the die. For this purpose, the width of this part of the die shall be measured to the nearest 0,05 mm. The average value of each set of measurements shall be used in calculating the area of the cross-section.

Using vernier calipers or other means, measure the distance between the centres of the reference lines to the nearest 0,2 mm. The test piece shall be in the unstrained state and shall not have been strained prior to measurement.

8.2.2 Ring test pieces

Measure the radial width and axial thickness at six positions approximately equally spaced around the circumference of the ring using the instruments described in 5.5. The average value of each set of measurements shall be used in calculating the area of the cross-section.

Measure the internal diameter to the nearest 0,2 mm, preferably by means of a suitable cone. The initial unstrained internal circumference, l_0 and the mean circumference l, shall be calculated according to the equations:

$$l_0 = \pi d_i$$

 $l = \pi (d_i + W_r)$

where

- d_i is the internal diameter;
- W_r is the radial width.

8.3 Insertion of test pieces in fatigue testing machine

8.3.1 Dumb-bell test pieces

Insert each test piece, in an unstrained state, into the clamps of the testing machine. Care should be taken not to overtighten the clamps; otherwise premature failure may occur at the gripped portion of the test piece. Move the reciprocating part of the machine by hand to the position of maximum extension, and adjust the clamps so that the reference lines on the test pieces standardie at the required separation. The nominal maximum strain shall not be exceeded during the adjustment. Make a final adjustment 1 min after applying the strain. The measurement shall be made, by vernier calipers or other means, to an accuracy such that the initial maximum strain is within \pm 2 % (absolute) of the nominal value.

> The required separation between the reference lines is given by the formula

$$\left(\frac{e+100}{100}\right)l_{\rm o}$$

where

e is the required initial maximum strain, expressed as a percentage;

 $l_{\rm o}$ is the initial unstrained reference length.

For example, for 100 % strain the required distance is twice the initial unstrained reference length.

Move the reciprocating part of the machine to the position of minimum clamp separation and remeasure the reference length. The test piece shall have returned to an unstrained state.

8.3.2 Ring test pieces

Set the machine to the required maximum extension so that a line passing round the periphery of the rollers has the required length to within the accuracy specified for dumb-bells in 8.3.1. Now move the reciprocating part of the machine so that the test piece can be mounted in the unstrained state.

The length corresponding to the required maximum strain is given by the formula

$$\left(\frac{e+100}{100}\right)l_{\rm o}$$

where l_{o} is the initial unstrained internal circumference.

 $\mathsf{NOTE}-\mathsf{When}$ the preferred thickness of 1,5 mm is used, the internal diameter of the ring test piece will be very close to that of the cutter. The positions of the rollers of the testing machine can thus be calibrated absolutely in this case in terms of strain.

8.4 Determination of fatigue life

When the test pieces have been set up, start the machine and record the number of cycles to break for each test piece.

Alternatively, if a measure of the variability in fatigue life is not required, the test may be terminated before all test pieces have broken provided sufficient have broken for the calculation of the median fatigue life (see 9.1). It is recommended that if test pieces remain unbroken after 2×10^6 cycles the test is terminated unless there is an explicit reason for continuing.

8.5 Measurement of set and maximum strain ARI after cycling

The unstrained length of a test piece increases during a fatigue test because of set. This usually occurs most rapidly at the start of the test and slows down progressively thereafter. If the setis3:198 high the fatigue life can be greatly increased and the results ds/sis may be misleading. In the case of dumb-bell test pieces, 0-694 changes may also occur in the maximum extended reference length because of stress softening and set.

Set and the changes in test length should therefore be determined using a suitable procedure, and the test strains reported in the test report shall be corrected in accordance with 9.3. The set shall not be taken up during the course of the fatigue test.

A recommended procedure is as follows. If a different method is used it shall be reported in the test report.

For each test strain run two test pieces in the fatigue testing machine for 1×10^3 cycles and then stop the machine in such a position that one of the test pieces is unstressed. After 1 min measure the unstrained test length of this test piece. In the case of dumb-bell test pieces, the measurement shall be made with the test piece mounted on the machine, which shall be moved by hand so that the test piece is just unstressed. In the case of ring test pieces, the test piece shall be removed from the machine and measured by means of a cone or other suitable means. Alternatively the set developed in rings may be measured on the machine by use of automatic force-extension equipment.

Run the machine for another 100 cycles and repeat the procedure just described for the other test piece.

Where necessary reinsert the test pieces in the machine and repeat the entire procedure after a total of 1 \times 10⁴ cycles and after each subsequent decade in the life of the test pieces (i.e. after 1 \times 10⁵, 1 \times 10⁶ cycles, etc.).

To measure the change in the maximum extended reference of dumb-bell test pieces use the same procedure as used for the determination of set, but with the machine at its maximum separation.

8.6 Measurement of maximum stress, and maximum strain energy density

For several purposes it will be desirable to express fatigue life as a function of the applied maximum stress, or maximum strain energy density (see the annex). If these parameters are required it is recommended that stress-strain behaviour be measured both initially and during the course of the fatigue test; like maximum strain, the maximum stress, and maximum strain energy density change during cycling because of the effects of set, stress softening and other factors. If such measurements are made, a separate test piece shall be used for each test material at each test strain.

Automatic force-extension equipment is preferred as this allows changes in maximum force to be followed for both dumb-bell and ring test pieces during the course of the fatigue test, and in the case of ring test pieces it also enables strain energy density to be obtained at the test frequency.

Alternatively stress-strain properties can be obtained from a quasi-static force-extension test either manually or by machine. A recommended procedure is as follows.

Determine the thickness and width of the test piece in accordance with 8.2. The average value of each set of measurements shall be used in calculating the area of cross-section. Extend the test piece to be the maximum strain relevant to the particular test, measuring the force-extension behaviour. This measurement shall be done either by applying weights to the test piece or by deforming it at a constant rate in a forcemeasuring machine. If a manual method is used, a regular loading schedule shall be adopted, preferably by applying the weights at 1 min intervals and measuring the relevant dimension (the reference length for a dumb-bell test piece) 30 s after loading. Measure the dimension at suitable increments of strain by Vernier calipers or other means; increments of 10 to 20 % extension should be suitable for most purposes.

After determining the initial force-extension relationship, insert the test piece in the fatigue testing machine and cycle at the required test strain to the highest decade of cycling below the median fatigue life (see 9.1) of the test material. (For example if the test material is found to have a median fatigue life of 6×10^4 cycles, the test piece should be cycled to 1×10^4 cycles.) Remove the test piece from the machine, remeasure its length, width and thickness after a suitable period of relaxation, and then repeat the force-extension determination.

9 Expression of results

9.1 Calculation of fatigue life

For each test strain, list in ascending order of magnitude the number of cycles to break for each of the fatigued test pieces. Calculate the median value of the fatigue life and, when appropriate (see 8.4), calculate the ratio of the highest to lowest values as a measure of dispersion. If required, other measures of central tendency and dispersion may be used. These shall be reported in the test report.

Results on any dumb-bell test piece which breaks outside the central narrow section shall be excluded from the calculation of results. However, low results should not be disregarded unless there is positive, non-statistical evidence that they are unrepresentative (for example the presence of an abnormally large flaw in the fracture surface clearly attributable to faulty test piece preparation or foreign body).

For many purposes it is desirable to plot the results in the form of a graph of fatigue life against maximum strain, stress, or strain energy density. It is recommended that a logarithmic scale be used for fatigue life. Strain is generally best plotted on a linear scale. A graph of fatigue life against maximum strain energy density on double logarithmic scales will often give a linear relationship over a considerable range; a similar graph of fatigue life against maximum stress may also give a linear relationship (although of different slope).

NOTE ON STATISTICAL ANALYSIS

The inherent variability of fatigue life is large. Both the magnitude of the variability and the nature of the distribution depend on vulcanizate details, particularly the type of rubber that is used. For example, with vulcanizates of natural rubber (NR) or isoprene rubber (IR) the overall variation in life for replicate tests is commonly twofold or less and the distribution often approximates to a normal (Laplace-Gauss) one; with styrene-butadiene rubber (SBR) or butadiene rubber, on the other hand, the variation can be an order of magnitude or more and the

distribution tends to be markedly skew. Because of these differences in 0 694

behaviour and the complexities they present, particularly in relation to the treatment of blends of different rubbers, it is recommended that standards/is the unstrained internal-circumference after the test simple, generally applicable methods of analysis be used for the 5e2/iso-opiece has been fatigued for a number of cycles, *n*; statistical treatment of fatigue data.

The median is recommended as a measure of central tendency because it is more representative than the arithmetic mean for rubbers whose lives follow a skewed distribution. Further advantages are that the median is easy to calculate, extreme values are automatically excluded and testing time can be saved (at the expense of some loss of precision in estimating dispersion). For rubbers such as NR or IR, six test pieces may give a satisfactory measure of the median but for SBR, and rubbers which behave in a similar way 12 test pieces are likely to be required.

It is important that some measure of dispersion be quoted. A simple measure that has been found useful in fatigue testing is the ratio of highest to lowest lives; in principle, this ratio involves the disadvantage that it does not converge, but for the numbers of test pieces normally used it has been found to correlate closely with the coefficient of variation and is much easier to calculate.

9.2 Calculation of set

The set, expressed as a percentage, developed in test pieces during cycling may be calculated using the formula

$$\left(\frac{l_n - l_0}{l_0}\right) 100$$

where, for dumb-bell test pieces

 l_{o} is the initial unstrained reference length;

 l_n is the unstrained length after the test piece has been fatigued for a number of cycles n;

and, for ring test pieces

 l_{o} is the initial unstrained internal circumference;

 l_n is the unstrained internal circumference after the test piece has been fatigued for a number of cycles, n.

Express the set as the mean value of the two test pieces.

9.3 Calculation of maximum strain

Calculate the initial maximum strain in accordance with 8.3.

The maximum strain, e_n , expressed as a percentage, corrected for any set that develops during cycling shall be calculated from the formula

$$e_n = \left(\frac{L_n - l_n}{l_n}\right) 100$$

where for dumb-bell test pieces

 l_n is the unstrained reference length after the test piece has been fatigued for a number of cycles, n;

 L_n is the distance between the reference lines at maximum clamp separation after the test piece has been fatigued for a s number of cycles, n (see 8.5);

and for ring test pieces

 L_n is equal to the initial extended length (as this is fixed by the position of the rollers in the testing machine, it remains constant during the test).

If required, strain may also be expressed as an extension ratio, λ , which is the ratio of the extended reference length or internal circumference to unstrained reference length or internal circumference. Thus a strain of 75 % elongation is equivalent to a λ of 1,75.

9.4 Calculation of maximum stress

Calculate the maximum stress, in megapascals, by dividing the maximum force, in newtons, by the unstressed cross-sectional area, in square millimetres (for dumb-bell test pieces); or by twice the unstressed cross-sectional area, in square millimetres (for ring test pieces).

For the calculation of maximum stress after a period of cycling, the unstressed cross-sectional area and the relevant maximum strain shall be determined from the dimensions of the cycled test piece.

9.5 Calculation of strain energy density

If the quasi-static force-extension method described in 8.6 has been used, plot curves of stress against strain using the values obtained before and after the period of cycling. From each of these curves calculate, by means of numerical integration, the strain energy density as a function of the maximum strain. Strain energy density or strain energy per unit volume is equal to the area under the stress-strain curve. It shall be expressed in joules per cubic metre.

If the force-extension behaviour is measured automatically for ring test pieces, calculate the maximum strain energy density at the testing frequency by dividing the area under the extension part of the force-extension curve by the test piece volume. The test piece volume shall be taken as the mean circumference (1; see 8.2.2) multiplied by the cross-sectional area.

10 **Test report**

The test report shall contain the following information:

a) sample details:

1) full description of the sample and its origin;

2) compound details, and cure time and temperature, where appropriate;

test method: b)

> 1) a reference to this International Standard, i.e. ISO 6943;

c) test details:

3) the temperature of test;

the type of atmosphere used (if different from that 4) specified in 7.4);

5) the method used to calculate set developed during cycling;

6) the method used to calculate maximum stress, and strain energy density when these are required;

any non-standardized procedures adopted; 7)

- d) test results:
 - 1) the number of test pieces used;

2) for each test strain, the individual fatigue lives, the median fatigue life and if measured the ratio of the highest to lowest fatigue life;

the initial test strain or test strains;

4) for each test strain, the mean value of the set developed and the number of cycles after which set is measured;

5) the test strains corrected for set and the number of cycles after which they are measured;

6) if required, the maximum stress, and strain energy density in the test pieces, and the number of cycles after which they are measured; (standards.iteh

7) if required, graphs of median fatigue life against maximum strain, stress or strain energy density determined before and/or after periods of cycling;

1) the type of test piece used, i.e. dumb-bell (type)16013:1984 type 2) or ring; https://standards.iteh.ai/catalog/standards/sist/8825e213-3b38-489f-a893-

6fcebbff15e2/iso-6943-1e84 date of the test. 2) the frequency of cycling;