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Foreword 
IS0 (the International Organization for Standardization) is a worldwide federation of 
national standards bodies (IS0 member bodies). The work of preparing International 
Standards is normally carried out through IS0 technical committees. Each member 
body interested in a subject for which a technical committee has been established has 
the right to be represented on that committee. International organizations, govern- 
mental and non-governmental, in liaison with ISO, also take part in the work. IS0 
collaborates closely with the International Electrotechnical Commission (IEC) on all 
matters of electrotechnical standardization. 

Draft International Standards adopted by the technical committees are circulated to 
the member bodies for approval before their acceptance as International Standards by 
the IS0 Council. They are approved in accordance with IS0 procedures requiring at 
least 75 % approval by the member bodies voting. 

International Standard IS0 7066-1 was prepared by Technical Committee ISO/TC 30, 
Measurement o f  fluid flow in closed conduits. 

IS0 7066 consists of the following parts, under the general title Assessment of 
uncertainty in the calibration and use of flow measurement devices : 

- 

- 
Part I :  Linear calibration relationships 

Part 2: Non-linear calibration relationships 

Annexes A, B and C form an integral part of this part of IS0 7066. Annexes D, E, F and 
G are for information only. 

iii 
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Introduction 

This International Standard has been drawn up according to the principles outlined in 
IS0 5168 and gives guidance on how the uncertainty in a calibration curve or in the 
mean of a number of measurements of the same flow-rate may be calculated. To 
achieve this it is assumed that the uncertainty in each individual measurement of flow- 
rate is calculated in accordance with IS0 5168. I 
This part of IS0 7066 deals only with calibration graphs which are linear or which can 
be linearized. IS0 7066-2 deals with non-linear calibration graphs. I iTeh STANDARD PREVIEW

(standards.iteh.ai)
ISO 7066-1:1989
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INTERNATIONAL STANDARD IS0 7066-1 : 1989 (E) 

Assessment of uncertainty in the calibration and use 
of flow measurement devices 

Part 1 : 
Linear calibration relationships 

1 Scope 

This International Standard deals with methods of assessing 
the uncertainty in the calibration of any method of measuring 
flow-rate, either in closed conduits or in open channels. It also 
deals with the estimation of the uncertainty in one or more 
measurements which use the resulting calibration graph. 

e 

Only linear relations are considered in this part of IS0 7066; the 
uncertainty in non-linear relations is the subject of IS0 7066-2. 
Where a calibration curve is not linear, this part of IS0 7066 is 
therefore applicable only if 

a) the variables may be transformed (for example by tak- 
ing logarithms) to create a linear relationship between them; 

b) the range over which the relationship is established may 
be subdivided in such a way that one variable varies linearly 
with the other within each subdivision: or 

c) systematic deviations from linearity of the calibration 
graph are negligible in comparison with the uncertainty 
associated with the individual points forming the graph'). 

Although it is assumed that the uncertainty in the independent 
and dependent variables for which the calibration graph is 
constructed is normally established prior to determining the 
calibration graph, consideration is given in 5.3 to how these 
uncertainties may sometimes be determined during the calibra- 
tion procedure itself, when the uncertainty in an individual 
calibration point is not known. 

For most of the calculations given in this part of IS0 7066, 
computer programs exist which are generally referred to in pro- 
gram libraries as "linear regression methods" or "linear curve 
fitting". 

Examples are given in annexes A and B of how the principles in 
this part of IS0  7066 may be applied. 

2 Normative references 

The following standards contain provisions which, through 
reference in this text, constitute provisions of this part of 
IS0  7066. At the time of publication, the editions indicated 
were valid. All standards are subject to revision, and parties to 
agreements based on this part of IS0 7066 are encouraged to 
investigate the possibility of applying the most recent editions 
of the standards listed below. Members of IEC and IS0 main- 
tain registers of currently valid International Standards. 

IS0  1100-2 : 1982, Liquid flow measurement in open channels 
- Part 2 : Determination of the stage-discharge relation. 

IS0 5168 : 1978, Measurement of fluid flow - Estimation of 
uncertainty of a flow-rate measurement. 

3 Symbols and definitions 

The symbols and definitions used in this part of IS0  7066 have 
been taken from IS0 772 and IS0  4006. 

The definitions given in 3.3 are only for terms used in some 
special sense or for terms the meaning of which it seems useful 
to emphasize. 

3.1 Symbols 

a intercept of the calibration graph on the ordinate 

b gradient of the calibration graph 

C discharge coefficient 

d diameter of the orifice in an orifice plate flow-meter 
I 

D diameter of the pipe 

1) For example, a turbine meter calibration graph may have a minimum value after the "hump" before rising asymptotically to become horizontal, 
but the linear Calibration range is often assumed to extend down to the flow-rate a t  which the extrapolation of the horizontal art of the graph 
intercepts the graph as it rises towards the maximum peak. '7 
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uncertainty of variable contained in parentheses1) 
random uncertainty of variable contained in paren- 
theses ) 

systematic uncertainty of variable contained in paren- 
theses” 
calibration coefficient 
number of repetitions of a measurement of flow-rate 
number of measurement points used to establish 
calibration graph 
number of pulses generated by a turbine meter per 
second 
flow-rate 
Reynolds number based on bore diameter 
experimental standard deviation of variable contained 
in parentheses 
standard deviation of points about the best straight line 
[see equation (1711 
covariance of x and y [see equation (1011 
Student’s t 

X independent variable 
Y dependent variable 

y 
V 

the value of the dependent variable predicted by the 
calibration graph 
number of degrees of freedom 

3.2 Subscripts and superscripts 

i 
k 
- 
,. 

ith value of a variable 
a specific value of a variable 
arithmetic mean value of a variable 
the value of the variable predicted by an equation of a 
fitted curve 

3.3 Definitions 

3.3.1 (absolute) error of measurement: The result of a 
measurement minus the (conventional) true value of the 
measurand. 

NOTES 
1 The term relates equally to 

- the indication, 
- the uncorrected result, 
- the corrected result. 

2 The known parts of the error of measurement may be compensated 
by applying appropriate corrections. The error of the corrected result 
can only be characterized by an uncertainty. 
3 The “absolute error”, which has a sign, should not be confused 
with the absolute value of an error which is the modulus of an error. 

3.3.2 random error: Component of the error of measure- 
ment which, in the course of a number of measurements of the 
same measurand, varies in an unpredictable way. 

NOTE - It is not possible to correct for random error. 

3.3.3 systematic error: Component of the error of measure- 
ment which, in the course of a number of measurements of the 
same measurand, remains constant or varies in a predictable 
way. 

NOTE - Systematic errors and their causes may be known or 
unknown. 

3.3.4 spurious errors: Errors which invalidate a measure- 
ment. They generally have a single cause such as the incorrect 
recording of one or more significant digits or malfunction of in- 
struments. 

3.3.5 uncertainty: An estimate characterizing the range of 
values within which the true value of a measurand lies. 

3.3.6 random uncertainty: Component of uncertainty 
associated with a random error. Its effect on mean values can 
be reduced by taking many measurements. 

3.3.7 systematic uncertainty: Component of uncertainty 
associated with a systematic error. Its effect cannot be reduced 
by taking many measurements. 

3.3.8 experimental standard deviation: For a series of n 
measurements of the same measurand, the parameter s 
characterizing the dispersion of the results and given by the for- 
mula 

S =  
n - I  

where 

xi is the result of the ith measurement; 

F is the arithmetic mean of the n results considered. 

NOTES 

1 The experimental standard deviation should not be confused with 
the population standard deviation O of a population of size Nand of 
mean m, given by the formula 

r N  1112 

i =  1 

N 

2 If the series of n measurements is considered to be a sample of a 
population, s is an estimate of the population standard deviation. 

1) In some International Standards the symbols U and E have been used instead of e. 

2 
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3.3.9 variance: The square of the standard deviation. 

3.3.10 confidence limits: The lower and upper limits within 
which the true value is expected to lie, with a specified prob- 
ability assuming negligible systematic error. 

3.3.11 calibration graph: Locus of points obtained by plot- 
ting some index of the response of a flow-meter against some 
function of the flow-rate. 

4 General 

For a calibration to be meaningful, the systematic uncertainty 
in the calibrator shall be very much less than the systematic 
uncertainty in the device or system being calibrated. This is 
especially true when the procedures specified in 7.3 are used. 

The calibration of a flow-metering device or system will result in 
a graph of the calibration coefficient which will subsequently be 
used to predict the flow-rate. As this subsequent flow-rate 
prediction has to have an uncertainty attached to it, then not 
only the functional relationship between calibration coefficient 
and flow-rate but also the uncertainty in the calibration coeffi- 
cient shall be established during calibration. 

There will exist a number of pairs of values (x,  y )  where the 
uncertainties in x and y [e (x)  and e(y)  respectively1)] are known 
from one of the methods given in clause 5.  The choice of the 
procedure by which the coefficients and the uncertainty of the 
calibration equation are calculated is determined by the relative 
magnitudes of the random components of the uncertainties 
e,(x) and e,ly), as described in clause 7. 

When e,(x) can be ignored (as, for example, is normally the 
case in the calibration of an orifice plate), the calibration 
equation and the uncertainty in the calibration coefficient are 
computed by the methods specified in 7.2 and 9.3 respectively. 
When, however, the random uncertainties in x and y are of 
similar magnitude, the methods specified in 7.3 and 9.4 should 
be used. When the uncertainties in x and y are both significant 
but cannot be regarded as approximately equal, then the 
calculation of the uncertainty in the calibration graph is outside 
the scope of this part of IS0 7066. 

e 

6 

A special case is that where y is effectively independent of x; 
this is a common situation with flow-meters used in closed 
pipes, since there is an obvious advantage in having a calibra- 
tion coefficient which is independent of flow-rate. In such 
cases, the method specified in 9.2 may be used for calculating 
the uncertainty. 

In addition to determining the uncertainty in the coefficient or 
curve obtained during the calibration of a flow-meter or gaug- 
ing station, it is necessary to determine the uncertainty in the 
particular value which is used as a coefficient or is read from 
the calibration curve when the flow-meter is used after having 
been calibrated. Where the value of the calibration coefficient 
to be used is determined completely independently of the 
measurement from which a flow-rate is to be obtained, then 
these two quantities are the same, provided that the conditions 
of use are identical with those of the calibration; if, however, 
some information from the test to measure the flow-rate is re- 
quired before the calibration coefficient or curve can be used, 
then an additional uncertainty will be introduced. Annex C 
describes how this additional uncertainty is introduced. 

The approaches to be used in these different circumstances are 
described in clause 9, and in clause 11 methods for assessing 
the uncertainty in the average of a number of measurements 
are described. 

5 Uncertainties in individual calibration 
points 

5.1 General 

When a flow-meter is being calibrated, some function of its 
output may be plotted against either a reference measurement 
of the flow-rate or some function of this flow-rate, such as the 
Reynolds number. 

In either case, it is necessary to establish the uncertainty in the 
coordinates of a single point in order to be able to compute the 
uncertainty in the calibration graph, and there are two ways in 
which this may be done: 

- 

- 
calibration data directly. 

IS0 5168 may be used; or 

the information can sometimes be obtained from the 

It should be noted, however, that the uncertainty in a co- 
ordinate may vary with the value of the coordinate itself; thus, 
for example, where the reference flow-rate is measured by a 
diversion system involving the static weighing of a quantity of 
liquid collected over a measured period of time, the uncertainty 
due to the timing is usually less for long diversion periods (and 
consequently for low flow-rates if approximately the same 
weight of water is collected at each test point) than for short 
diversion periods. 

1) The customary categories of independent and dependent variables, and of abscissae (horizontal) and ordinate (vertical) coordinates in a graph, 
are irrelevant for linear regressions in that the important distinction here is between variables that have significant uncertainties and variables that have 
negligible (or zero) uncertainties. When the uncertainty in one variable is significantly greater, in the manner described in clause 7, than the other, the 
former will be denoted byy and the latter byx. Thus the regressions studied are all fory on x irrespective of whether a variable is considered to be in- 
dependent, and irrespective of which variable is plotted "horizontally". 
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Justification shall always be provided where it is assumed that 
the uncertainty is constant throughout the range of a co- 
ordinate. Where the uncertainty cannot be regarded as 
constant, it shall be estimated for sufficient values of the 
coordinate to give a clear idea of how it varies with the value of 
the coordinate. 

5.2 Use of IS0 5168 

IS0 5168 describes in detail how an estimation of the uncertain- 
ty in a single measurement of flow-rate may be arrived at, and 
the procedures described in IS0 5168 may be used to calculate 
the uncertainties of both the independent and the dependent 
variables in the calibration graph. 

Is it important, however, that the random and systematic con- 
tributions to the uncertainty are calculated separately and not 
combined; the various formulae for calculating the uncertainty 
in a calibration graph are first used to calculate only the random 
component of the uncertainty, and so only the random compo- 
nent of the uncertainty in the individual points is used at that 
stage. Subsequently, the systematic uncertainty in the indi- 
vidual points is added by the root-sum-square method to the 
value obtained to give the final combined value. The random 
component of the uncertainty is required separately in any 
case, since it is the relative magnitudes of random uncertainties 
in x and y which determine the calculation procedures to be 
used. 

This method of calculating the uncertainty in the coordinates of 
a single experimental point may be used only when previous in- 
vestigations have been carried out to establish the uncertainties 
in the various subsidiary measurements which have to be 
made, or when this information is available from some other 
source. 

5.3 Use of calibration data 

Where the measurement conditions can be kept constant, it is 
possible to determine the random components of the uncer- 
tainties of the coordinates of the calibration graph during the 
calibration by repeating measurements. Thus, for example in 
the calibration of an orifice plate, it might be possible to keep 
the Reynolds number constant and to take a series of readings 
of the data necessary to compute the calibration coefficient, 
and it might conversely be possible to keep the differential 
pressure across the orifice plate constant, while making a 
number of determinations of the reference flow-rate (and con- 
sequently the Reynolds number). 

The uncertainty (due to random effects) in the calibration coef- 
ficient or Reynolds number may then be calculated from the 
standard deviations of the resulting measurements. 

There is no alternative to using the methods of IS0 5168 in 
assessing systematic uncertainties if the assessment of the 
uncertainty is to be in accordance with this part of IS0 7066. 

6 Linearity of the calibration graph 

6.1 General 

In considering the shape of any calibration graph, previous 
knowledge or supporting information appropriate to the flow- 
metering method being used (for example if there is a relevant 
published standard) should always be taken into account to 
justify any assumption made about the shape of the graph. 
Where the shape of the calibration graph is unusual, a suffi- 
cient number of calibration points shall be repeated to verify the 
shape for that particular flow-meter. 

In the absence of such information, or where there is no reason 
to believe in advance that the form of the curve should be 
linear, simple techniques are available to establish whether or 
not the graph can be treated as linear, but these are applicable 
only when the experimental points are not grouped into sets. 
When the experimental points are grouped into sets, only visual 
observations may be used, since the extensive statistical tests 
which are otherwise required are outside the scope of this part 
of IS0 7066. 

When the data can be grouped into sets, the following test may 
be used, but the sets shall be such that each one consists of a 
number of measurements made at  one of a number of fixed 
values for one of the coordinates. Figure 1 illustrates a case 
where there are five sets, the number of measurements within 
the sets varying from four to six. 

The test consists of comparing the variance of the means of the 
groups about the fitted straight line with the variance within the 
groups. 

The variance within the groups, s;, is given by 

O n: 

where 

n is the total number of measurements; 

n, is the number of measurements in the ith group; 

q is the number of groups; 

y i ~  is the j t h  measurement in the ith group; 

n; 

Y i , j  
- j = l  

Yi=ni 
The variance of the means of the group about the fitted straight 
line, s$,, is given by 

a 

i =  1 
s2, = .. 

9 - 2  
. (2) 
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1 

161,44 
18,51 
10,13 
7,71 
6,61 
5,99 
5,59 
5,32 
5,12 
4,96 
4,35 
4,17 
4.08 
3,96 
334 

where If the relationship between the calibration coefficient and the in- 
dependent variable is not linear, there are two possible ways in 
which the data may be made suitable for analysis in accordance 
with this part of IS0 7066. The first, to linearize the curve, may, 
however, only be done on the basis of some physical model, 

6.2 Linearization of curve  

The coordinates may be transformed to give two new variables 
which, when plotted one against the other, produce a straight 
line, 01 a function of one of the coordinates may be used in- 
stead of the coordinate itself SO as to produce this result, 
although it is of course essential that the transformation be 
capable of being used easily when the resulting graph is subse- 
quently applied to the use of the flow-meter or the flow 
measurement method. 

n, and q have the same meaning as in equation (1); 

$i is the value of y obtained from the fitted straight line for 
a given value of x .  

The test quotient iss’$sg, and if this number equals or exceeds 
the value given in table 1 for v, = q - 2 and v2 = n - q 
degrees of freedom, then the best-fit equation through the data 
points cannot be assumed to be linear. If, however, the 
quotient is less than the corresponding value given in table 1, 
the best-fit equation may be assumed to be linear at the 95 % 
confidence level. 

2 

200 
19 
9,55 
6,94 
5,79 
5,14 
4,74 
4,46 
4,26 
4,l 
3,49 
3,32 
3,23 
3,11 
3,09 

Table 1 - Values of the F distribution for selected degrees of freedom - 
Probability level 0.05 

5 

230 
19,3 
9,Ol 
6,26 
5,05 
439 
3,97 
3,69 
3,48 
3,33 
2,71 
233 
2,45 
2 3  
2,31 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
80 

100 

6 

234 
19,3 
8,94 
6,16 
4,95 
4,28 
3,87 
3,5a 
3,37 
3,22 
2,6 
2,42 
2,34 
2,21 
2,19 

- 
3 

216 
- 

19,2 
9,28 
659 
5,41 
4,76 
4,35 
4,07 
3,86 
3,71 

2,92 
2,84 
2,72 

3,1 

2,7 

- 
4 

225 
- 

19,2 
9,12 
6.39 
5,19 
4,53 
4,12 
334 
3,63 
3 9  
2,87 
2869 
2,61 
2r49 
2,46 

- 
7 

237 
19,4 
8,89 
6,09 
4,m 
4,21 
3,79 
3,5 
3,29 
3,14 
2,51 
2,33 
2,25 
2,13 
2,1 

- 
8 

239 
19,4 
8,85 
604 
4 m  
4,15 
3,73 
3,44 
3,23 
3,07 
2,45 
2,27 
2,18 
2,06 
2.03 

9 

241 
19,4 
8,81 
6 
4,77 

3,68 
3 3  
3,18 
3.02 
2,39 
2,21 
2,12 
2 
1,97 

4,1 

10 

242 
19,4 
8,79 
5,96 
4,74 
4,06 
3,64 
3’35 
3,14 
2,98 
2,35 
2,16 
2,08 
I,% 
1,93 

X X 

20 

248 
19,4 
8,66 
5,s 
4 , s  
3,87 
3,44 
3,15 
234 
2,77 
2,12 
1,93 
1,84 
1,7 
1 

30 

250 
19,5 
8,62 
5,75 
4,5 
3,81 
3 3  
3,m 
2 , s  

2,04 
1 
1,74 
1,6 
1,57 

2,7 

X X 

X 
X 

x 

40 

251 
19,5 
8,59 
5,72 
4 9  
3,77 
334 
3.04 
2,83 
2 , s  
1,m 
1,79 
I,@ 
1 ,a 
1,52 - 

80 

252 
19,5 
8 , s  
5,67 
4,41 
3,72 
329 
239 
2,77 
2,6 
1,92 
1,71 
1,61 
1,45 
1,41 - 

__. 

100 

253 
19,5 
8,55 
5,66 
4,41 
3,71 
3,27 
2,97 
2,76 
2159 
1,91 

1 r 5 9  
1,43 
1,39 

1,7 

- 

Figure 1 - Example of grouping data to  establish linearity of best-fit straight line 
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An example of the first possibility would be to plot "log y" 
against "log x" where the basic relation is of the form 
"y = ux2" ("a" being a constant). 

The second method of linearizing a curve is commonly used 
when calibrating an orifice plate. In this case, it is known from 
experience that it is better to plot the discharge coefficient C 
against the Reynolds number than to plot the differential 
pressure against the Reynolds number, since this gives a graph 
which is linear over a fairly wide range. The graph is, however, 
non-linear at low Reynolds numbers, and it has been found 
from experience that plotting the discharge coefficient against 
some function of the Reynolds number (for example Redo.5 
or Re;0,75) extends the linear range. 

6.3 Subdivision of the curve 

Although a calibration graph may not be linear over the full 
range of the calibration, it may well be that by subdividing the 
curve into a number of parts, each part can be regarded as 

Y 

Yi 

- 

linear; in this case, a separate calibration equation and con- 
fidence limits shall be calculated for each portion of the graph. 
Where possible, the number of points in each sub-section of 
the graph should be such that they give approximately the 
same uncertainties for the line through each sub-section. Since 
calibration graphs should never be extrapolated beyond the ex- 
treme data points unless there is extremely good reason for 
doing so, there shall be at least three points common to adjac- 
ent portions of the calibration graph. 

7 Fitting the best straight line 

7.1 General 

Before a best straight line and its associated uncertainty are 
calculated, the data available shall first be examined, since they 
can fall into one of several classes, and different formulae apply 
for different types of data. Some basic principles are illustrated 
in figure 2. 

Figure 2 - Basic principles for best-fit straight lines 
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The best straight line fit to a sample of n points, (xi, ri), when 
1 i a n,  is given by the regression of y on x:  

y, - y =  b(xi - X) .. . (3) 

Obtain an approximate value for the gradient b from a graph or 
from equation (8) or from equation (1 1). If the absolute value of 
be,(x) is less than approximately one-fifth of e,(y) ,  the formulae 
given in 7.2 shall be used to fit a straight line; if not, the for- 
mulae given in 7.3 shall be used. 

where 

7.2 Random uncertainty negligible or small in 
one variable in comparison with the other 

The gradient of the line is, in this case, given by 

s(x, y )  

&XI 
b = -  ... (8) pi is the value of y on the line for a measured value xi; 

r. Y i  
where 

- i =  1 
y=- ... (5) n 

n - I  
i = l  

... (9) n 

Equation (3) may also be written as 

= a + bxi . . : (6) .. (101 

where i =  1 

The intercept, a, is given by equation (7) : 

a = y -  bT The method to be used for computing the values of the coeffi- 
cients a and b depends on the magnitude of the random uncer- 
tainties in x and y .  

7.3 Random uncertainty in both variables of 
similar magnitude 

The gradient is calculated from 

The most common case occurs when the random uncertainties 
in x and y are both significantly different from zero. Fortu- 
nately, if both variables have random uncertainties significantly 
different from zero, it is normally possible to assume that 

a) one random uncertainty is negligible in comparison with 
the other, or 

(11) 

where b) these random uncertainties are of approximately equal 
magnitude. 

. . . (12) The former assumption leads to the same formulae as for the 
cases where only one variable has a random uncertainty 
significantly different from zero; this is the situation which nor- 
mally applies. 

i =  1 

s2(x)  is given by equation (9); 

To assess the relative magnitude of the random uncertainties in 
x and y ,  first calculate e,(x) and e,(y) according to the principles 
of IS0 5168. 

the intercept, a, is again given by equation (7) 

The sign of b is the same as that of s(x, y ) .  
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NOTE - The following alternative formulae for s2(x), s 2 ( y )  and dx, y )  
are easier to use, if the computation is carried out manually, but great 
care should be taken since they are prone to rounding errors: 

8 Detection of outliers 

Spurious errors (see IS0 5168) are errors, such as human errors 
or instrument malfunction, which invalidate a measurement; 
they may be due to, for example, the transposing of numbers in 
recording data or the presence of pockets of air in leads from a 
water line to a manometer. Such errors cannot be incorporated 
into any statistical analysis and the measurement shall be 
discarded. Where the error is not large enough to make the 
result obviously invalid, some rejection criterion should be ap- 
plied to decide whether the data point should be rejected or re- 
tained. 

Whenever it is suspected that one or more results have been af- 
fected by errors of this nature, a statistical “outlier” test should 
be applied. For the purposes of this part of IS0  7066, either the 
Dixon test or the Grubbs extreme deviation outlier test may be 
used. The Dixon test is easy to use by hand, but when a set of 
values are being processed by computer, the Grubbs test is 
more suitable, since it is more reliable, easier to program and 
takes up less storage. 

Details of these tests are given in annex E. 

9 Uncertainty of calibration 

9.1 General 

In general, the uncertainty in the best straight line arises from 
uncertainties in the values for the intercept, a, and for the gra- 
dient, b. 

From equation (3) 

pi = y +  b(xi - X) . . .  (13) 

Thus, combining the variances of j7 Xand b by the root-sum- 
square method (see IS0 5168), 

s2(y) = ~ ~ ( j - 4  + b2s2(X) + (xk - XI2$(b) ... (14) 

where xk is the value of x at which the uncertainty in y is re- 
quired. 

Thus s2(y) is the variance of Ywhich would be obtained from 
the scatter of several different determinations of U obtained 

using the same range and values of x, and with the same 
number of measurements of y ,  and is given by 

s2(X)  is defined similarly. 

Note that $(Y) and $(y)  are quite different from $(X I  and 
$(y )  defined in equations (9) and (12). s;!(y), for example, is the 
variance of all the values of y over the range of the calibration 
graph relative to their mean value, and s::(x) has a similar mean- 
ing, whereas s*(?) is associated only with the scatter of dif- 
ferent determinations of i a n d  is essentially an indication of the 
random uncertainty in y ,  

From equation (7), it can be seen that the variance of a is given 
by 

and the contribution of the variance in 6 to the variance in F i s  

( X k  - X)2s2(b) 

Thus the random component of the uncertainty in F, e,($),  is 
given at the 95 % confidence level by 

e , ( $ )  = -I t [s2(y) + b2s2(X) + (xk -- X)2s2(b)]”2 . . . (15) 

where t is obtained from table 2 for n -- 2 degrees of freedom. 

Table 2 - Value of Student’s t at  95 ?40 
confidence level 

Number of degrees of I freedom, v 
1 
2 
3 
4 
5 
6 
7 

10 
15 
20 
30 
60 
a3 

I 

Equation (15) is the basic equation for uncertainty which is 
used either directly or in a modified form in the various 
paragraphs below. 

As noted in clause 4, the method to be used for calculating the 
uncertainty in a calibration depends on the magnitude of the 
random uncertainty in the variable x, aind on whether or not the 
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value of y is independent of the value of x, that is on whether or 
not b is zero. The first step is therefore to establish whether or 
not the gradient, b, of the line is significantly different from 
zero, and this is carried out as follows. 

The standard deviation of b, s(b), shall be calculated from 

(16) 

where SR is the standard deviation of the points about the best 
straight line, i.e. 

IS0 7066-1 : 1989 (E) 

NOTE - Equation (16) is strictly valid only when the random uncertain- 
ty in x contributes significantly less to the calibration graph uncertainty 
than the random uncertainty in y does, since it is a simplification of a 
more general formula. The expansion of equation (17), used to develop 
equation (18), also makes this assumption. The use of equations (18) 
and (19) will, however, give a smaller uncertainty for b than the full for- 
mulae would, and so if they include zero, the more general formula 
would lead to the same conclusion. If they do not include zero, it is 
possible that the gradient will be treated as having a non-zero value, 
when it might have been acceptable to take its value as zero, but this 
would be a rare situation, and the only penalty incurred would be that 
the more complicated formulae given in 9.4 would be used instead of 
the simpler method given in 9.2. The results obtained for the uncertain- 
ty of the best-fit line would in such a case be virtually identical no mat- 
ter whether the formulae given in 9.2 or 9.4 were used. 

9.2 Calibration curve with zero gradient 

This is more convenient, but the calculation of the numerator is 
prone to rounding errors, so it is important to ensure that 
enough significant figures are used in the computation. 

The 95 % confidence limits for b are then given by 

. . .  b - rsib) 
b + tdb)  (19) 

where r is the value obtained from table 2 for n - 2 degrees of 
freedom. 

If these limits include zero and there is independent evidence 
that the particular flow-meter or type of flow-meter is expected 
to have a constant coefficient (for example from the informa- 
tion in a relevant standard or a previous calibration), it can be 
assumed that the calibration coefficient has a constant value. If 
there is no independent evidence that a constant calibration 
coefficient is expected, then, whether or not the limits include 
zero, the formulae given in 9.3 (if the uncertainty in x can be ig- 
nored) or in 9.4 shall be used. 

In order to calculate the uncertainty in the calibration coeffi- 
cient the random and systematic components shall first be 
evaluated separately. Random components are calculated from 
the formulae given in 9.2 to 9.4 and shall include the contribu- 
tions from the random uncertainties in the instruments used 
during the calibration, so that these do not have to be allowed 
for separately. In particular, hysteresis effects in instruments 
will contribute to the random uncertainty component obtained 
in this way. Systematic components are calculated in accord- 
ance with IS0 5168. 

In this case, the calibration coefficient has a single value, and all 
of the estimates of this value can be analysed together, ir- 
respective of the value of the independent variable to which 
they correspond. An example of where this often occurs is in 
the calibration of a turbine meter for use in water. 

The best estimate of the value of the calibration coefficient is 
given by equation (5) : 

n - 
In this case, b = s(b) = O, and so, from equation (151, the ran- 
dom component of the uncertainty in 9 is given at the 95 % 
confidence level by 

where 

(20) 

and t is obtained from table 2 for n - 1 degrees of freedom. 

The systematic component of the uncertainty in y, e,(?), is 
calculated as described in clause 5 and the uncertainty in the 
calibration coefficient, e(?,), is then given by 
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