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Foreword

ISO (the International Organization for Standardization) is a worldwide federation of
national standards bodies (ISO member bodies). The work of preparing International
Standards is normally carried out through ISO technical committees. Each member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with ISO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to
the member bodies for approval before their acceptance as International Standards by
the 1ISO Council. They are approved in accordance with ISO procedures requiring at
least 75 % approval by the member bodies voting.

International Standard ISO 7066-2 was prepared by Technical Committee ISO/TC 30,
Measurement of fluid flow in closed conduits.

Users should note that all International Standards undergo revision from time to time
and that any reference made herein to any other International Standard implies its
latest edition, unless otherwise stated.
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Assessment of uncertainty in the calibration and use
of flow measurement devices —

Part 2:

Non-linear calibration relationships

0 Introduction

The method of fitting a straight line to flow measurement
calibration data and of assessing the uncertainty in the calibra-
tion are dealt with in ISO 7066-1. ISO 7066-2 deals with the case
where a straight line is inadequate for representing the calibra-
tion data.

1 Scope and field of application

This part of ISO 7066 describes the procedures for fitting a
quadratic, cubic or higher degree polynomial expression to a
non-linear! set of calibration data, using the least-squares
criterion, and of assessing the uncertainty associated with the
resulting calibration curve. It considers only the use of
polynomials with powers which are integers.

Because it is generally not practicable to carry out this type of
curve fitting and assessment of uncertainty without using a
computer, it is assumed in this part of ISO 7066 that the user
has access to one. In many cases it will be possible to use stan-
dard routines available on most computers; as an alternative
the FORTRAN program listed in annex C may be used.

Examples of the use of these methods are given in annex D.
Extrapolation beyond the range of the data is not permitted.

Annexes A, B, C, D and E do not form integral parts of this part
of 1SO 7066.

2 References

ISO 5168, Measurement of fluid flow — Estimation of uncer-
tainty of a flow-rate measurement.?

1) These procedures are also suitable for a linear set of calibration data.

2) At present at the stage of draft. (Revision of ISO 5168 : 1978.)

3) At present at the stage of draft.

ISO 7066-1, Assessment of uncertainty in the calibration and
use of flow measurement devices — Part 1: Linear calibration
relationships.>

3 Definitions

For the purposes of this part of ISO 7066, the following defini-
tions apply.

3.1 method of least squares: Technique used to compute
the coefficients of a particular form of an equation which is
chosen for fitting a curve to data. The principle of least squares
is the minimization of the sum of squares of deviations of the
data from the curve.

3.2 polynomial (function): For a variable x, a series of
terms with increasing integer powers of x.

3.3 regression analysis: The process of quantifying the
dependence of one variable on one or more other variables.

NOTE — Many of the available computer programs suitable for curve
fitting have the word “‘regression’’ in the title. For the purposes of this
part of ISO 7066, the terms regression and least squares may be
regarded as interchangeable.

3.4 standard deviation: The positive square root of the
variance.

3.5 variance: A measure of dispersion based on the mean of
the squares of deviations of values of a variable from its
expected value.

4 Symbols and abbreviations

b

i coefficient of X;

Cjp element of the inverse matrix
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e{) random uncertainty of variable contained in paren-
theses"

es( ) systematic uncertainty of variable contained in paren-
theses"

ely,) total uncertainty of calibration coefficient!
& coefficient of jth orthogonal polynomial

m degree of polynomial

n number of data values

pjlx) jth orthogonal polynomial

s( ) experimental standard deviation of variable contained in
parentheses

S, residual standard deviation of data values about the

curve
t Student’s ¢
X the independent variable

x* arbitrary specified value of x
x arithmetic mean of the data values x;
X; value of x at the ith data point

X; Jth independent variable (in multiple linear regression)

Xj;  value of x; at the ith data point

y the dependent variable

y arithmetic mean of the data values Vi

y value of y predicted by the equation of the fitted curve

Y value of y at the ith data point
¥ value of y at x = x;

v number of degrees of freedom

5 Curve fitting

5.1 General

Before attempting polynomial curve fitting, consideration
should be given to whether a simple transformation of the x
variable or the y variable or both may effectively linearize the
data to enable the straight line methods described in ISO 7066-1
to be used. Some appropriate transformations are suggested in
ISO 7066-1.

If it is not possible to establish a straight line, then the objective
is to find the degree and coefficients of the polynomial function
which best represents a set of n pairs of (x; y;,) data values
obtained from calibration. If, for example, a quadratic expres-
sion is chosen, the curve will be of the form

J =by+ bix + byx? e

The general polynomial expression is

J=by+ bx+ ..+ bx¥+ .. +b,x"
or
m
5= b C @)
j=0

By applying the least-squares criterion, the coefficients b; are
computed to minimize the sum of squares of deviations of the
data points from the curve:

n

Y i

i=1
where j; is the value predicted by equation (2) at x = x;.

In some cases, the degree m of the polynomial will be predeter-
mined; for example, it may be known from experience that the
calibration data will be satisfactorily represented by a cubic
(m = 3) expression. Otherwise, the degree of fit is chosen by
increasing the degree until an optimum is achieved (see 5.3).

If in increasing the degree of fit beyond a moderate degree
significant improvements in the fit, as described in 5.3, con-
tinue to occur, then it is likely that the functional dependence is
not suitable for representation by a polynomial; further, if the
equation fitted has too many terms, the curve may display
spurious oscillations. A not uncommon example is data which
are virtually constant over most of the x range, but which vary
strongly close to one end of the range.

In such cases, it is appropriate to divide the range into sections
(see ISO 7066-1) which either are linear or can be fitted by a
low-degree polynomial. Alternatively, transforming one or both
variables may lead to a linear or low-degree polynomial func-
tion; transforming the independent variable to its reciprocal 1/x
will in some cases result in adequate linearity.

The least-squares methods described in this part of ISO 7066
may not be appropriate if the effect of the random uncertainty
ex) of the data values x; is not negligible in comparison with
that of the random uncertainty e(y) of the y values. As in
ISO 7066-1, if the magnitude of the slope? of the calibration
curve is always less than one-fifth of e,(y) / e,(x), the methods
may be regarded as appropriate; where this does not apply the

1) In some International Standards, the symbols U and E have been used instead of e.

2) “‘Slope” here means the derivative dp/dx = by + 2byx + ...

2
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mathematical treatment is outside the scope of this part of
ISO 7066. If therefore the normal practice in calibrating any
particular meter is to plot the variables in such a way that the
above condition does not hold, then either the conventional
choice of abscissa and ordinate is to be reversed or this part of
ISO 7066 cannot be used.

If either variable is transformed before fitting, then the uncer-
tainties referred to above, and later (clause 6), relate to the new
transformed variables. If, as a result of transforming the depen-
dent variable, the random uncertainty e, (y) cannot be regarded
as constant over the range, then a weighted least-squares
method should be used. The weighted least-squares method is
not described in this part of ISO 7066 but many computer
library routines allow the data to be weighted.

5.2 Computational methods

Standard library routines for least-squares curve fitting are
available on most computers. The method for fitting a straight
line described in ISO 7066-1 is commonly known as linear or
simple linear regression: the equivalent method for fitting a
polynomial may be described as polynomial or curvilinear
regression, which is a special type of multiple linear regression.
Annex A gives further information on regression methods and
how to use them.

As an alternative to the standard regression routines, the or-
thogonal polynomial method described in annex B may be
used: this method is particularly suitable when the degree of fit
is not known beforehand. Annex C lists an appropriate
orthogonal polynomial computer program.

When a computer is not available and the x values are uniformly
spaced, a finite-difference method (see annex E) may be used
to provide a quick indication of what degree of fit may be
appropriate to represent the data. The coefficients of a
polynomial representing the data may also be calculated, but
this will not be the least-squares polynomial. The calculation of
uncertainty using this method is beyond the scope of this part
of 1ISO 7066.

5.3 Selecting the optimum degree of fit

The optimum fit is determined by trying increasing values of the
degree m, either up to a specified maximum or until no further
significant improvement occurs. The residual standard devi-
ation s, should be computed for each degree (s, is the square
root of the residual variance) using the equation

n
$2= 3 =32 n=m =) ... @)

i=1

where ¥; is the value predicted by the polynomial expression
[equation (2)] at x = x;.

NOTE — sr2 is equivalent to the term s2(y, x) used in 1SO 7066-1.

The degree m should always be much less than the number n of
data points.

1ISO 7066-2 : 1988 (E)

If the data are well represented by a polynomial of degree m,
then s, will decrease significantly until the degree m is reached;
thereafter s, will remain approximately constant. In general,
however, the degree at which the decrease in s, ceases to be
significant is not obvious, and an objective test of significance
should be used as an aid to finding the optimum degree of fit.

Increasing the degree from m —1 to m is regarded as providing
a statistically significant improvement in the fit if the new coef-
ficient b, differs significantly from zero, i.e. if b, + tg55(b,,)
and b, — fg5 s(by,) (the 95 % confidence limits of b,,,) do not
include zero.

This condition may be expressed as

> lgg

—_m_
s(b,,)
where tg5 is the Student’s ¢ value for the 95 % confidence level

withv =n —m —1.

The value of fg5 as a function of the number of degrees of
freedom v can be computed from the following empirical
equation:

tgs = 1,96 + 2,36/v + 3,2/v? + 5,2/v38 ... (4)

For the orthogonal polynomial coefficient g,,, (see annex B), the
condition is

Em
s(gm)

> oy

Expressions for the variances of the coefficients s2(b,,) and
sz(gm) are given in annex A and annex B respectively.

It is important to test the effect of increasing the degree at least
one degree beyond that which first shows no significant im-
provement, since it is often the case that either only the odd
terms or only the even terms produce a significant improve-
ment.

From a statistical point of view, the highest degree which pro-
duces an improvement in the fit which is significant at the 95 %
confidence level may be regarded as the optimum degree.
However, before this degree is selected as providing the most
suitable expression to represent the data, other factors should
be considered. These factors include any knowledge of the
expected shape of the curve, the desirability of having a func-
tional form which is not too complex, the range which it is
necessary to represent, and the accuracy which is sought.

In assessing these factors, it is always advisable to plot graphs
showing the data and the possible curves; these graphs will
also highlight other possible problems. For example, if the
degree is too low, then the curve will fail to represent a real
trend in the data, and the predicted value y may have a bias
over some of the range. If the degree is too high, the curve may
be fitting the scatter of the data rather than the underlying
trend.

The examples given in annex D illustrate the application of
some of these principles.
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6 Uncertainty

The random component of the uncertainty, at the 95 % con-
fidence level, of a predicted value j, is given by

er(f) = tg55(y)

where s(J) is the square root of the variance s2(j) of . Expres-
sions for s2() are given in annexes A and B; in general, s2(5)
may be expressed as a polynomial function of x of degree 2m. It
is important to ensure that enough significant figures are used
in the computation of s2($) to avoid large rounding errors which
result from subtraction.

It should be noted that the estimate of uncertainty provided by
e.(7) will only be valid to the extent that the polynomial expres-
sion chosen is a good approximation to the true functional rela-
tionship between y and x.

The 95 % random confidence limits for the true value of y are
ytely

As in ISO 7066-1, the uncertainty in the calibration coefficient is

given by

e(d,) = [e,z()?) + esz(f)J”z

where e¢(j) is the systematic component of the uncertainty
in y.

NOTE — In the revised version of ISO 5168, in preparation, guidelines
are provided for using either the linear addition or the root-sum-square
combination of random and systematic errors.

If the dependent variable has been transformed, then all the
above uncertainties refer to the transformed variable.
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Annex A

Regression methods

(This annex does not form an integral part of the standard.)

A.1 Introduction

Regression methods for curve fitting are widely available under various names as standard routines in computer libraries. The
documentation provided with these routines tends to assume a certain level of knowledge of regression analysis. The purpose of this
annex is to provide a general description of the methods and terminology of regression curve fitting as a background to the documen-
tation of the library routines.

The most widely available regression technique, apart from simple linear regression, is multiple linear regression; curve fitting can be
carried out using a special type of multiple linear regression known as polynomial or curvilinear regression. If a polynomial regression
routine is not available, then a multiple linear regression method can be used, although it is less convenient. ““Stepwise” and
“backwards elimination”” or “‘back solution’ are special types of multiple linear regression methods which may be used.

A.2 Muitiple linear regression

n
In the following, the summation sign Y is used to represent Z unless otherwise noted.

i=1

A dependent variable y is assumed to be related linearly to m independent variables x;, x5, ..., X,, by
Y =Bo+ Bix1+ Boxa + ... + BpXpy + U ... (5)
where

Boto B, are the unknown regression coefficients;

U is a measure of the random effects which cause the dependence of y on the m independent variables to depart from exact
linearity.

From the n sets of observations
i X190 Xjp coir Xp), i=1,2, ..., n
the estimates of the regression coefficents are
by, by, ..., by,
so that the estimate j of the true value corresponding to the ith set of observations of the independent variables is
Ji=bg+ bix1;+ .o + bypXpi ... (8)

The application of the least-squares procedure to minimize pN| yi — )7[)2 leads to a set of m + 1 simultaneous equations, commonly
known as the ‘“normal equations’:

nbo + E(X1i)b1 + Z(XZi)bZ + ... + Z(Xm,)bm = Zy,'
Z(X],‘)bo + Z(X]j)2b1 + ... + E(X“xmi)bm = E(x”yi) R )]
T, by + Zlpx1dby + oo + T2 b = XXy

These can then be solved for the m + 1 unknowns b, by, ..., b,
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A.3 Polynomial (curvilinear) regression
When a relationship between two variables is not linear, but may be fitted by a polynomial function
J=bg+ bx + byx2 + ...+ b,x™

there is said to be a polynomial or curvilinear regression of y on x. This can be treated as a multiple linear regression with the indepen-
dent variables x4, xy, ..., X, replaced by x, X2, ..., x™M.

In clauses A.4 and A.5, any of the multiple linear regression expressions may be transformed to the equivalent polynomial regression
expressions by replacing the jth independent variable x; by x/, and the corresponding data values x;; by x/.
A.4 Computation of coefficients and variances
Consider the multiple linear regression equation with m = 2

J=by+ bixy + byxy ‘ ... (8)
which is equivalent to

7= by + bx + byx? .09
in the polynomial regression case.

When the least-squares criterion is applied, the normal equations are

nbo + 2(X1,')b1 + Z(le')bz = Z(y,-) ... (10)
Z(X],‘)bo + Z(X”)zb] + Z(X“Xz,')bz = E(x”yi) oo (1
T by + Llxgixi) by + Tlxp)2by = Lixgy) )

The traditional method for solving the normal equations involves computing the inverse of the 3 x 3 matrix of coefficients of by, b,
and b,. If the elements of this inverse matrix are

Co Co1 Co

Cio Cn Cp2

Co Cpn Cp
then

by = Cog Ly; + Co Zlxyp)) + Cop Lixgy))
by = CygXy; + Cyy Zixyp)) + Crp Llxgiy)) ... (13)
by = Cy 2Ly; + Cop Xixyy) + Cop Lixpy))

or, in generalized form,

by =" [ Cix Zbxav))]
k=0

where x; = 1fork = 0.

Note that since the matrix from the normal equations is symmetric, the inverse matrix is also symmetric.
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The variances of the coefficients are
s2(bg) s,2C00
s2(by) = 52Cyy

Sz(bz) = S,.2C22

1l

where the residual variance, s,2, is given as in 5.3 by

_ Zy; — 5’\1)2

52
n—m-1

Because the inverse matrix is symmetric,

Co1 = Cyo
Co2 = Cx ... 14)
Cip = Cy

These non-diagonal terms are used to calculate the covariances') between the coefficients b ;; using COV to denote covariance,

COV(bo, b1) = SrZCm
COV(by, by) = s2Cq ... (15)
COV(b1, b2) = Sr2C12

At specified values x; = x1* and x, = x,*, the value predicted by the regression equation is
),; = bo + b1x1* + b2X2* ... (16)

The variance of this value of J is given by

s2p) = 52 [coo + Cpylx1%)2 + Coolxp*)? + 2Co1x1* + 2Cxy* + 2C12x1*x2*] V)|
The factor of 2 arises because Cj, = C; for each j, k.

The general formula is

m m
52()7) = Sr2 Z 2 (Cijj*Xk*) N (18)

j=0k=0
where x;*, x;* = 1forj, k = 0.
For polynomial regression, x;* = (x*V and x;* = (x*)¥, and so
m m
25 =52 Y | Y Culxr)i
j=0 | k=0
Adapting this expression to the form of a polynomial of degree 2m gives

m 2m

25 =52 Y zj" Cujorc |V [ +52 Y i Crojoic | x*) ... (19)
k=0

j=0 j=m+1 k=j-m

1) The covariance of two coefficients indicates the effect of a change in one on the magnitude of the other. The inverse matrix multiplied by the
scalar s.2 is known as the variance, covariance, or variance-covariance matrix.
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