INTERNATIONAL STANDARD

Second edition 1995-09-15

Textile machinery and accessories — Beams for winding —

Part 3: iTeh Sweaver's BeamsEVIEW (standards.iteh.ai)

Matérie<u>k pour l'industr</u>ie textile — Ensouples pour enroulement https://standards.itepairtiet3??Ensolaplesistie⁵tissagea93a-4f56-b1d0-43639c7f10ea/iso-8116-3-1995

Reference number ISO 8116-3:1995(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting VIEW a vote.

International Standard ISO 8116-3 was prepared by Technical Committee ISO/TC 72, *Textile machinery and allied machinery and accessories*, Subcommittee SC 2, *Winding and preparatory machinery*, for fabric manufacture.

https://standards.iteh.ai/catalog/standards/sist/c5333eb7-a93a-4f56-b1d0-

This second edition of ISO 8116-3 cancels and replaces ISO 6175:1983 and ISO 8116-3:1986, which have been technically revised.

ISO 8116 consists of the following parts, under the general title *Textile* machinery and accessories — Beams for winding:

- Part 1: General vocabulary
- Part 2: Warper's beams
- Part 3: Weaver's beams
- Part 4: Quality classification of flanges for weaver's beams, warper's beams and sectional beams
- Part 5: Sectional beams for warp knitting machines
- Part 6: Beams for ribbon weaving and ribbon knitting
- Part 7: Beams for dyeing slivers, rovings and yarns

© ISO 1995

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

- Part 8: Definitions of run-out tolerances and methods of measurement
- Part 9: Dyeing beams for textile fabrics

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 8116-3:1995</u> https://standards.iteh.ai/catalog/standards/sist/c5333eb7-a93a-4f56-b1d0-43639c7f10ea/iso-8116-3-1995

iTeh STANDARD PREVIEW This page intentionally left blank (standards.iteh.ai)

<u>ISO 8116-3:1995</u> https://standards.iteh.ai/catalog/standards/sist/c5333eb7-a93a-4f56-b1d0-43639c7f10ea/iso-8116-3-1995

Textile machinery and accessories — Beams for winding —

Part 3: Weaver's beams

1 Scope

This part of ISO 8116 defines the basic terms and lays down the main dimensions and the variations in form and position for weaver's beams that are used for weaving preparation as well as for weaving. Furthermore the main dimensions of the profile threads for weaver's beams are given.

(standards.iteh.ai)

2 Normative references

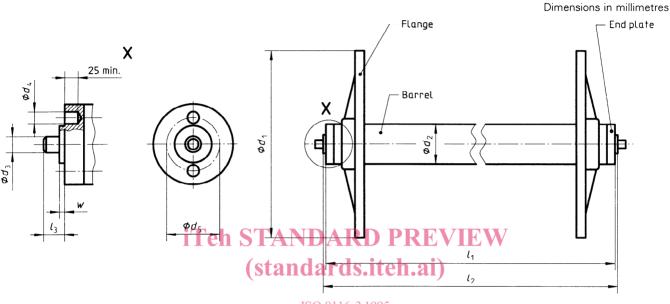
<u>ISO 8116-3:1995</u>

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 8116. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 8116 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 109:1982, Textile machinery - Working widths of weaving machines.

ISO 286-2:1988, ISO system of limits and fits — Part 2: Tables of standard tolerance grades and limit deviations for holes and shafts.

ISO 8116-8:1995, Textile machinery and accessories — Beams for winding — Part 8: Definitions of run-out tolerances and methods of measurement.


3 Terminology and main dimensions

(See figures 1 and 2 and table 1)

- d_1 flange diameter
- d_2 barrel diameter
- d₃ shaft diameter
- d_4 driving hole diameter
- d₅ diameter between driving hole centres
- *l*₁ barrel length including end plates

© ISO

- *l*₂ length over bosses (collar to collar)
- l_3 length of shaft (boss included)
- l_4 length over bosses (collar to collar) (related to designs with end plates with square hole)
- l_5 length of boss
- w width of boss

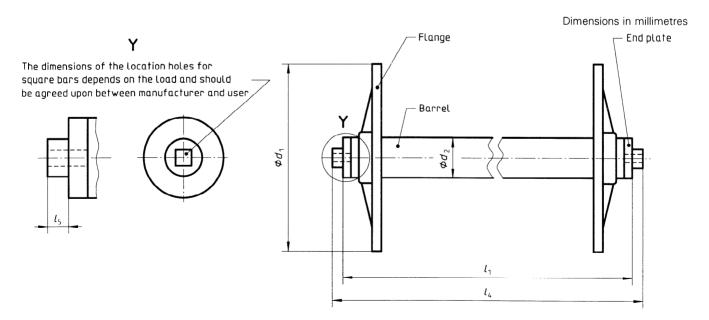


Figure 2 — Weaver's beam with end plates having square hole — Type B

Dimensions in millimetres

		And the second sec	r ·····		T	1					minnetie
d_1	L.	<i>l</i> ₂	d_3	<i>l</i> ₁	l2	l_3	l ₄	l_5	w	d_4	d_5
	Completely machined	Partly machined	h11 1)		0 -2						
500											
600											
700 750	150	152,4								22	100
750											
	150	152,4									
800			30								
	216	219,1									
850			38	above				32	5		
	216	219,1		1 000 in	$l_1 + 2w^{2}$	40	$l_1 + 2l_5$				
900			45	steps of 100				68	(50) 2)		
		iTeh	ST/	ANDA	RD PF	REV	EW				
950	216	219,1	50							—	
1 000	269	273	(Sta	andard	is.iten.	a 1)					
		1	.1. 2.1 1	<u>ISO 811</u>		-1-7 -02	455 (1, 1, 10)				
1 250	269		ras.πen.av 43	catalog/standa 639c7f10ea/is	ras/sist/c5555 0-8116-3-19	ed /-a933 95	1-4106-0100-				
1 400 1 500	269	273									
recomm	ended that the s	beam barrels, the shaft diameter a ed relationship ar	nd the bar	rrel diameter r	ext in size to	that indic	cated for the	flange dia	sufficient. ameter d_1	In this ca of the be	ise it is eam be
1) See	ISO 286-2.									<u></u>	

Table 1 — Main dimensions of weaver's beams, types A and B

2) In the case of special designs of end plates (for example shaft with square shank), dimension w should be either 5 mm or 50 mm.

4 Profile threads

(See figures 3 and 4 and tables 2 and 3)

- d₆ outer diameter of barrel thread
- d_7 inner diameter of flange thread
- *P* pitch of the thread

Dimensions in millimetres

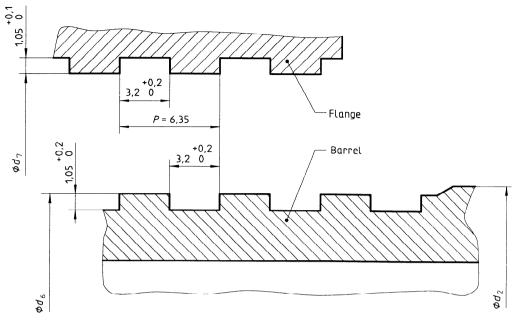
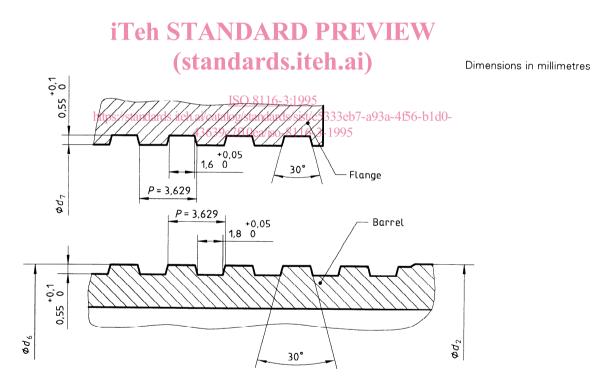



Figure 3 — Type 1 threads

·	able 2 — Type T threads	Dimensions in millimetres
<i>d</i> ₂	<i>d</i> ₆ 0 -0.2	<i>d</i> ₇ +0,15 0
150	149,35	147,45
216	215,35	213,45
269	268,35	266,45

Table 2 — Type 1 threads

Table 3 — Type 2 threads

-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dimensions in millimetres			
<i>d</i> ₂	<i>d</i> ₆ 0 -0,1	<i>d</i> ₇ +0,15 0			
150	149,9	149,2			
216	215,9	215,2			
269	268,9	268,2			
NOTE — Threads of type 2 are primarily used as adjusting threads. Flanges are usually secured to the barrel by separate means.					

5 Circular axial run-out tolerance, *T*_a, of flanges

The permissible circular axial run-out tolerances. Tool the flanges are given in table 4. The run-out shall be measured in accordance with ISO 8116-843639c7fl0ea/iso-8116-3-1995

d_1	Ta
mm	mm
$d_1 \leqslant 600$	0,5
$600 < d_1 \le 800$	0,75
$800 < d_1 \leqslant 1\ 000$	1
1 000 < <i>d</i> ₁ ≤ 1 250	1,25
<i>d</i> ₁ > 1 250	1,5

Table 4 — Permissible circular axial run-out of flanges

6 Total run-out tolerance, T_r , of the barrel

The permissible total run-out tolerance, T_r , of the barrel is given in millimetres, by the formula

$$T_{\rm r} = \frac{0.25 \times l_1}{1\ 000}$$

The run-out shall be measured in accordance with ISO 8116-8.