International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX CHAPODHAR OPPAHUSALUR TO CTAHDAPTUSALUMOORGANISATION INTERNATIONALE DE NORMALISATION

Plain bearings — Testing of the tribological behaviour of bearing materials —

Part 1 : Testing of the friction and wear behaviour of bearing material/mating material/oil combinations under conditions of boundary lubrication

Paliers lisses — Essai du comportement tribologique des matériaux antifriction — Partie 1 : Essai du comportement au frottement et à l'usure des ensembles matériau antifriction/matériau conjugué/huile dans les conditions de lubrification limite

ISO 7148-1:1985 First edition – 1985-03:15/standards.iteh.ai/catalog/standards/sist/ad38f1d2-1218-4b73-a49ff8b382ed0461/iso-7148-1-1985

UDC 621.822.5 : 539.62

Descriptors : bearings, plain bearings, materials, tests, friction tests.

7148/1

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting TANDARD PREVIEW

International Standard ISO 7148/1 was prepared by Technical Committee ISO/TC 123, *Plain bearings*.

<u>ISO 7148-1:1985</u> https://standards.iteh.ai/catalog/standards/sist/ad38f1d2-1218-4b73-a49ff8b382ed0461/iso-7148-1-1985

© International Organization for Standardization, 1985 •

Plain bearings — Testing of the tribological behaviour of bearing materials -

Part 1 : Testing of the friction and wear behaviour of bearing material/mating material/oil combinations under conditions of boundary lubrication

iTeh STANDARD PREVIEW

Introduction 0

(standards.itch.ai) SO 4385, Plain bearings – Compression testing of metallic

This International Standard specifies the determinations of the8-1:1985 tribological behaviour of bearing, materials, to be used for aPlards/sist/ad38fld2-1218-4b73-a49f-plication in oil (see note in clause 4) lubricated bearings 0461/iso-7143-1-List of symbols

The surfaces of the journal and the bearing in an oil lubricated bearing, designed to run under conditions of hydrodynamic lubrication, are not always fully kept apart by a thick oil film. The percentage of the total lifetime of the bearing, during which this is the case, varies considerably from one application to the other. If thick film lubrication is not provided, mixed or boundary lubrication prevails. Under such conditions, wear of the bearing and mating material cannot be avoided.

Scope and field of application 1

This part of ISO 7148 specifies a test procedure to measure the friction and wear of materials for oil lubricated bearings under conditions of boundary lubrication with ample supply of lubricant to the friction couple.

The test procedure enables the friction and wear behaviour of bearing material/mating material/oil combinations to be compared with that of other combinations, thus facilitating the selection of a bearing material for a bearing running repeatedly or for long periods under conditions of boundary lubrication, low speed and continuous rotation. Owing to differences in test conditions, absolute friction and wear values can be expected to vary from one test facility to another.

2 References

ISO 468, Surface roughness - Parameters, their values and general rules for specifying requirements.

- index referring to the condition of boundary lubrication h
- coefficient of friction f

bearing materials.

- F_{n} normal force, in newtons
- friction force, in newtons F_{f}
- k wear coefficient, in cubic millimetres per newton metre
- sliding distance, in metres S
- temperature of the oil bath, in degrees Celsius toil
- и sliding velocity, in metres per second
- material removed by wear as measured by a change in w_{\parallel} length, in micrometres
- material removed by wear as measured by a change in w, volume, in cubic millimetres
- linear wear rate, in micrometres per kilometre $W_{1/r}$
- volumetric wear rate, in cubic millimetres per metre $W_{\rm v/s}$
- overlap ratio (area of contact divided by area of wear ø track)

4 Definitions

NOTE — For the purposes of this part of 7148, the term "oil" shall be understood in its widest possible meaning, i.e. encompassing mineral and synthetic oils.

4.1 boundary lubrication: Type of lubrication in which friction and wear between two surfaces in relative motion are determined by the properties of the surface and by the properties of the lubricant other than bulk viscosity.

4.2 coefficient of friction : Ratio of the friction force between two bodies to the normal force pressing these bodies together, i.e. :

$$f = \frac{F_{\rm f}}{F_{\rm n}}$$

4.3 wear rate : The quantity of material removed in unit distance of sliding as a result of wear, i.e. :

$$w_{v/s} = \frac{w_v}{s}$$
 or $w_{l/s} = \frac{w_l}{s}$

4.4 wear coefficient : The volumetric wear rate referred to the applied normal force, i.e. :

$$k = \frac{w_{\rm v/s}}{F_{\rm n}}$$

5 Equipment

airtight friction chamber. Facilities shall be available for continuous friction and wear measurement. A low vibration level is required to give reproducible results.

6 Preparation of test surfaces

After giving the test surfaces a suitable surface finish (see clause 8), the specimens shall be thoroughly cleaned of contamination, for instance in a vapour-degreasing apparatus.

7 Test procedure

Apply a normal force, F_n , (see clause 8) and a sliding velocity, u, equal to 0,01 \pm 0,001 m/s. At such value of u, boundary lubrication conditions are expected to prevail.

Friction sliding distance and wear sliding distance curves should be recorded so that the periods of running in and of steady state can be distinguished. The total sliding distance should be given with the results. After the test has been completed, measure the wear of the disc surface, for instance by profile tracing with a stylus instrument so that the contribution of the wear of the disc to the total wear can be evaluated. This will also reveal whether the disc surface has been scratched by contact with the pin. In addition, wear of the pin should be determined by weighing before and after the test. The wear of the pin should be not less than 5 mg.

After the test has been completed, inspect the surface con-ISO 714ditions of the pin and of the disc (formation of a reaction layer, how transferred material grooves, etc.).

https://standards.iteh.ai/catalog/standtransferred_material_2groeyes_aterial_ f8b382ed0461/iro_7148alial/28bad for the pip and the diag, and the

(standar

Figures 1 and 2 show schematic drawings of two possible specimen assemblies. A stationary specimen (the pin) made of the bearing material to be tested is pressed with a known normal force against a rotating specimen (the disc) made from material of the mating component (i.e. usually low carbon steel). The area of contact between the pin A and disc B shall, preferably, be completely immersed in the oil. Spray lubrication may be used, if the volume of the lubricant supply is sufficient to ensure that the wear rate is not dependent upon the lubricant flow-rate. Test oil should not be recirculated or re-used.

In practice, surfaces with cylindrical surface curvature (journal bearings) will frequently be offered for testing. If they are multilayer materials, two procedures are open :

a) adapt the radius of the disc to that of the pin (see figure 1);

b) start testing with a line contact situation (radius of the pin larger than the radius of the disc).

If multilayer materials with flat surfaces (thrust bearings) are to be tested, the pin-on-disc arrangement with a curved contact area (see figure 1) will only do if an initial line contact is accepted. Otherwise the pin-on-disc arrangement with a flat contact area (see figure 2) shall be used.

The oil temperature, t_{oil} , shall be kept constant at the desired test value with an accuracy of \pm 0,5 K. If tests are to be performed under a cover gas, use shall be made of a sufficiently

f8b382cd0461/ince7148 in a sector of the pin and the disc, and the oil should be renewed for each test.

8 Independent test variables

In comparative testing of different material/oil combinations, the methods of machining and finishing the pin (bearing material) and the disc (mating material) and the values of the following independent test variables shall be chosen and kept constant during the test programme :

a) initial roughness, R_a and R_z , of the pin and of the disc (see ISO 468);

- b) normal force, F_n ;
- c) oil temperature, t_{oil};
- d) sliding distance, s;
- e) overlap ratio, *q*.

NOTE – In order to simulate friction and wear in a given bearing, realistic values of the roughness, R_a and R_z , the normal force, F_n , the oil temperature, t_{oil} , and a sufficiently long sliding distance, s, shall be chosen.

In practice, a journal surface will have a workshop surface roughness which is dependent upon the technical possibilities in the workshop, the type of machining process and the care and professional skill that is devoted to the production of the journal. Thus when materials are being evaluated for a specific application, it is important that the surface shall be typical of that which will be used in the application.

At prolonged running under conditions of boundary lubrication, the roughness of the steel disc may (but does not necessarily) change gradually as a result of contact with the bearing material^[1]. This, in turn, may lead to change in the wear rate of the bearing material. In selecting materials for applications in which the bearing is designed to run under conditions of boundary lubrication for appreciable periods of time, this effect can be taken into account by performing long-term tests, measuring the wear volume as a function of the sliding distance. After the test has been completed, the roughness of the disc surface, R_{a} and R_{z} , shall be measured and given with the test results.

As far as F_n is concerned, the most widely acceptable compromise is to make the maximum force per unit projected pin area equal to the force per unit projected bearing area. It may be desirable to apply stepwise loading.

For toil, a temperature corresponding to the highest temperature that is expected to occur in practice should be chosen.

If the friction and wear behaviour of a bearing material/mating 9.3 Specimens material/oil combination is to be compared with other combinations without a specific application in mind, the roughness values, R_a and R_z , the normal force, F_n , and the oil temperature, t_{oil} , should, preferably, be varied between wide S.19-3.1. Pini) limits.

Heat treatment

Surface treatment

Micro structure

Hardness

9.1.3 Lubricant

Type (including information on viscosity and, if possible, on additives).

NOTE - In certain cases it may be preferable to use oil from the actual application for which the materials are being evaluated.

9.2 Cover gas

Type

Relative humidity, expressed as a percentage

Material : bearing material (see 9.1.1) ISO 7148-1:1985

KEVIE

Description of materialsta oil dest conditions and sist a dimensional 8-4673-a49f-9 2ed0461/iso-7148-1-1985 and results

Unless agreed otherwise, for description of materials, oil, test conditions and test results, the following data shall be supplied.

9.1 Materials

9.1.1 Bearing material

Type

Chemical composition (m/m)

Method of production

Heat treatment

Surface treatment

Micro structure

Hardness

0,2 % proof stress $R_{p0,2}$ (see ISO 4385)

9.1.2 Material of mating component

Type

Chemical composition (m/m)

Surface finishing method

 $R_{\rm a}$ and $R_{\rm z}$, in micrometres

9.3.2 Disc

Material : mating material (see 9.1.2)

Dimensions

Overlap ratio, g

Surface finishing method

 R_a and R_z , in micrometres

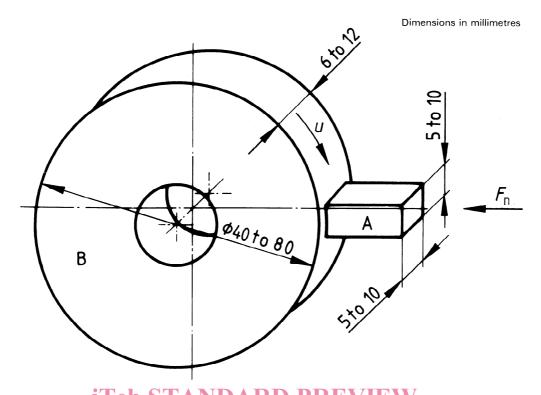
9.4 Operating variables

Normal force, F_{n} , in newtons

Sliding velocity, u, in metres per second

Lubricant temperature, toil, in degrees Celsius

Sliding distance, s, in metres


NOTE – The sliding velocity, u, is fixed at 0,01 \pm 0,001 m/s.

9.5 Test results

Designation	Symbol	Units
Friction coefficient in the period of steady state	$f_{\sf b}$	
Linear wear rate of the pin in the period of steady state	$w_{\rm l/s}$	µm/km
Volumetric wear rate of the pin in the period of steady state ¹⁾	w _{v/s}	mm ³ /m
Wear coefficient of the pin in the period of steady state 1)	k _b	mm ³ /(N·m)
Total wear volume of the pin	w _{vp}	mm ³
 a) calculated from the wear-sliding distance curve 		
b) calculated from the loss of mass		
Total wear volume of the disc	w _{vd}	mm ³
Surface condition Pin Disc Roughness		
R _a		μm
R _z		μm
Transferred material () () Reaction layer () ()		_ _
Scratches STAND, AR, D	PR	EVIE
<pre>- a few (1 to 3) () () - many (stand(a)rd(s))</pre>	teh.a	i) –

to enable a steady-state condition to be achieved or the specimen shall be shaped to match the radius of the disc.

f8b382ed0461/iso-7148-1-1985

NOTE — The width of the disc B shall exceed that of the pin A. The contact surface of the pin may be pre-shaped to fit the radius of curvature of the ring. Although a large misfit (difference in radii; initial line contact) is permitted, it may unduly prolong the running-in period (see clause 7). For multilayer materials, only available in the form of cylindrical bushings, testing under initial line contact conditions may be unavoidable (i.e. if the inner diameter of the bushing exceeds 80 mm).

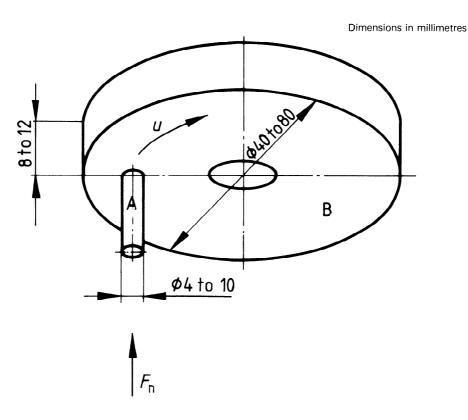


Figure 2 - Schematic drawing of a pin-on-disc assembly with a flat contact area

Bibliography

- [1] BEGELINGER, A. and DE GEE, A.W.J. Wear in lubricated journal bearings. Transactions ASME 100 (1), 1978, 104-109.
- [2] HABIG, K.-H., BROSZEIT, E. and DE GEE, A.W.J. *Friction and wear tests on metallic bearing materials for oil lubricated bearings.* Wear 69, 1981, 43-54.

The following International Standard will also be of use in conjunction with this part of ISO 7148:

ISO 4378, Plain bearings – Terms, definitions and classification –

Part 1: Design, bearing materials and their properties.

Part 2: Friction and wear.

Part 3: Lubrication.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 7148-1:1985 https://standards.iteh.ai/catalog/standards/sist/ad38f1d2-1218-4b73-a49ff8b382ed0461/iso-7148-1-1985

.