INTERNATIONAL STANDARD ISO 7156 First edition 1991-03-01 # Refined nickel — Sampling Nickel raffinė – Échantillonnage iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 7156:1991 https://standards.iteh.ai/catalog/standards/sist/95e9f9eb-6e35-4c3d-9001-0263b3758c65/iso-7156-1991 ### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote. Teh STANDARD PREVIEW International Standard ISO 7156 was prepared by Technical Committee ISO/TC 155, Nickel and nickel alloys. Annexes A and B of this International Standard are for information only. https://standards.iteh.ai/catalog/standards/sist/95e9f9eb-6e35-4c3d-9001-0263b3758c65/iso-7156-1991 © ISO 1991 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case Postale 56 ● CH-1211 Genève 20 ● Switzerland Printed in Switzerland # Refined nickel — Sampling #### 1 Scope This International Standard specifies sampling procedures for up to 25 tonnes (metric tons) of refined nickel of the same composition, size and shape and manufactured under similar conditions of production. NOTE 1 These procedures are not primarily intended for routine or production lot sampling. However, they can, in certain cases, be used for lot transactions between purchaser and supplier. Teh STANDARD, PRE # (standards.iteh.ai) primary sample. In ## 2 Normative references The following standards contain provisions which 56:1991 through reference in this textuconstitute/provisions and six/95e919eb-66 of this International Standard. At the time of publis/iso-711%-x901 cation, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard NOTE 2 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards. ISO 6283:1979, Refined nickel. ISO 6372-2:1989, Nickel and nickel alloys — Terms and definitions — Part 2: Refinery products. ### 3 Presentation of the product Refined nickel is usually delivered in one of the following forms: - whole-sheet cathodes which weigh about 50 kg for a thickness most often between 6 mm and 12 mm; - drums containing metal pieces. The pieces may be cut cathodes (generally squares with 25 mm, 50 mm or 100 mm edges), briquettes, pellets, shot, granules or powder. The capacity of the drums is most often 50 kg, 250 kg or 1 000 kg. #### 4 Principle of sampling procedure #### 4.1 Symbols For the purposes of this International Standard, the following symbols are used. U The total number of units of packaging in a lot of 25 tonnes or less. These units may be whole-sheet cathodes or drums. The number of units which constitute the primary sample. These *N* units are the primary increments. The number of increments taken from each of the primary increments. The number of secondary increments which constitute the secondary sample. NOTE 2 The justification of the number of primary and secondary increments is given in annex A. #### 4.2 Sample selection - **4.2.1** From the U units contained in the lot, N units are selected to constitute the primary sample. The selection of these units shall respect the rules of random sampling. - **4.2.2** From each of the N primary increments, n secondary increments are taken. The $(N \times n)$ secondary increments are combined and constitute the secondary sample. - 4.2.3 An adequate complementary treatment to reduce the mass of the secondary sample results in the final laboratory sample for chemical analysis. Cathodes or briquettes are machined to obtain a final sample in the form of fine chips. Pellets, shot or granules are either taken as they are or, when their particle size analysis allows, machined to obtain chips. Powders are homogenized and reduced by riffling until the final sample is obtained. #### Sample preparation - 5.1 The laboratory sample shall be prepared as directed in the clauses dealing with various product forms - 5.2 The laboratory sample shall be of sufficient mass for the chemical analysis planned. For fine chips or powder, it is recommended to divide a sample of at least 200 g between two parties and to keep two portions in reserve in case of dispute. For larger pieces, such as pellets, granules or shot, a minimum mass of 500 g is recommended for each party and for reserve. #### 5.3 Precautions in sample preparation - 5.3.1 Given the high purity of certain qualities of nickel, extremely strict precautions shall be taken in order not to contaminate the sample. Contamination of a sample may occur from tools, utensils and containers used in the sampling operation. Care shall therefore be taken in their selection and use to eliminate or minimize such contamination. - **5.3.2** Contamination from cutting tools by elements $(N \times n)$ as given in column 5 of table 1. such as cobalt, chromium, molybdenum, vanadium and tungsten shall be avoided. All machining operations shall be carried out without using lubricants. ISO 716(2.2) The secondary increments may be taken by Experience has shown that high-speed steel cutting standary one of the three following methods. tools are better for nickel metal than tungsten 758c65/iso-7156-1991 carbide tools. iien SIA #### 5.4 Final preparation of the laboratory sample - 5.4.1 Any sample which has been through a mechanical preparation and, in particular, machining into chips, will inevitably be contaminated on the surface of the metal by, at least, the element iron. It is essential, therefore, that the chips or pieces are cleaned by etching with acid before the test sample is taken for analysis. Unless otherwise specified in the International Standard to be used for the analytical method, the laboratory shall be instructed to clean the test sample as directed in 5.4.2. - 5.4.2 Place the chips in a beaker and cover with a few millilitres of concentrated hydrochloric acid. Heat at low temperature and, as soon as dissolution starts (evolution of a few bubbles), add a large quantity of distilled or demineralized water to stop this dissolution. Pour off the diluted acid and wash the chips several times with water, by decantation of the water from the beaker, until acid-free. Wash the chips with high-purity acetone and dry them in a low-temperature oven. Take the test sample to be analysed from the clean chips and keep the remainder for future analyses. ## Sampling of whole-sheet cathodes #### 6.1 Primary sampling - **6.1.1** Determine the number of units U of wholesheet cathodes in the lot and select, at random, Nunits (primary increments) using table 1 as a guide. The number of units in a lot of a given mass and the number of units which constitute the primary sample in table 1 are based on a unit mass of 50 kg. - 6.1.2 If the mass per cathode is significantly different from 50 kg, the number of primary increments N shall be selected on the basis of the mass of the lot, as given in column 1 of table 1, and the number N of selected units as given in column 3 of table 1. ## Secondary sampling - **6.2.1** From each of the primary increments, n secondary increments as given in column 4 of table 1 shall be taken. Where values of n are coupled, e.g. 3 and 2 or 2 and 1, these are to be distributed randomly among the N primary increments to give - a) Drilling a hole through the cathode using a drill, preferably with a diameter between 15 mm and 25 mm. It is possible to obtain chips by appropriate shaping of the drill. Strands of metal shall be cut into small pieces. - b) Milling a hole using a cylindrical milling cutter with a diameter between 15 mm and 25 mm to produce chips directly. It may be necessary to drill a small pilot hole, e.g. 2 mm to 3 mm, when using certain designs of cutter. - c) Punching out a disc of about 15 mm to 25 mm diameter and milling the disc to produce chips. - 6.2.3 For the position of the secondary increment, five geometrical positions are defined on a diagonal of a whole-sheet cathode. Position 1 is taken at a distance of 25 mm to 30 mm from one corner. The distance from position 1 to the centre of the cathode is then divided into five equal intervals to define positions 2 to 5. Thus position 5 is a little before the middle of the cathode. A template may be used to define the positions of the holes along the diagonal of the cathode. The starting corner for the template shall be alternated for each cathode to be sampled. to avoid bias due to starting at the top or bottom of the cathode. - 6.2.4 For lots of greater than 3,75 tonnes (where n=1) the secondary increment from the first cathode shall be taken at position 1, from the second at position 2, etc., and back to position 1 for the sixth cathode. When n is greater than 1, the $(N \times n)$ increments shall be distributed among the N cathodes so that positions 1 to 5 are used nearly the same number of times. - **6.2.5** Combine the chips from the $(N \times n)$ increments constituting the secondary sample and mix thoroughly. The mass of the chips shall be at least 200 g. Divide the sample by riffling or by fractional shovelling to provide the required number of laboratory samples. # Sampling of drums containing forms requiring comminution or machining Nickel forms such as cathode shapes, briquettes, shot or large granules or pellets require comminution or machining to obtain chips or pieces of a suitable size for the laboratory sample. 7.2.2 Machine the secondary increments by milling or drilling and cutting, as indicated in 6.2.2, to obtain chips. Briquettes shall be machined from the edge to the centre such that one half of each piece is consumed in the milling process. Large pellets or shot may be pressed between platens for further machining or cutting. 7.2.3 Combine the chips from the $(N \times n)$ increments constituting the secondary sample and mix thoroughly. The mass of the chips shall be at least 200 g. Divide the sample by riffling or by fractional shovelling to provide the required number of laboratory samples. NOTE 3 For pellet or shot, it may be necessary to increase the value of n to obtain sufficient material for the laboratory samples. # Sampling of drums containing forms not requiring comminution or machining Nickel forms such as powder, fine shot and granules and small pellets can be sampled directly and do not Ten STANDAR Dreed further preparation such as comminution. #### 7.1 Primary sampling (standards.iteh.ai) 8.1 Primary sampling - of drums of given mass. Select the number of drums N to constitute the primary sample as given in table 1 for drums of 50 kg, table 2 3 250 kg and table 3 for drums of 1000 kg. - 7.1.2 For drums of intermediate mass, the numbers N and n shall be adjusted such that the total number of secondary increments $(N \times n)$ is the constant number given in table 1 to table 3 for a given tonnage. The number of units N shall be as high as possible as a function of the number of units U in the lot, and n shall be as small as possible for a given value of $(N \times n)$ specified in table 1 to table 3. The following example illustrates this point: 5 tonne lot, by drums of 400 kg U = 13 drumsFrom table 2. $N \times n = 23$ and N = 20but N cannot be greater than UTherefore n is 2 or 1 and N = 13i.e. n = 2 for 10 of the drums and 1 for 3 of the drums. #### 7.2 Secondary sampling 7.2.1 From each drum constituting the primary sample, take at random one or more pieces (secondary increments) as given in table 1 to table 3. rected in 7.1.1. #### 8.2 Secondary sampling - 8.2.1 One secondary increment of at least 500 g shall be taken from each drum constituting the primary sample. The masses of each of these secondary increments shall be approximately equal. For products which are known to be homogeneous, material may be scooped from the top of the drum. Otherwise, secondary increments shall be obtained by fractional shovelling or by riffling the whole drum. - 8.2.2 Secondary increments of nickel powder produced by chemical methods shall be obtained by successive riffling of the entire contents of each drum through 1:1 splitters until a mass of about 500 g is obtained from each of the primary increments. - **8.2.3** Combine the $(N \times n)$ secondary increments constituting the secondary sample and homogenize. Reduce the bulk of the sample by consecutive riffling through 1:1 splitters to obtain the required number of laboratory samples. # 9 Sampling report The sampling report shall include the following particulars: - a) reference to the appropriate clauses of this International Standard; - b) any operation not included in this International Standard or which is regarded as optional; - any unusual features noted during sampling or any deviations made from the sampling procedure. # iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 7156:1991 https://standards.iteh.ai/catalog/standards/sist/95e9f9eb-6e35-4c3d-9001-0263b3758c65/iso-7156-1991 Table 1 — Sample selection from units of 50 kg | | Table 1 — Sample selection from units of 50 kg | | | | | | | | | |--------------------|---|--------------------|-----------------|--------------------|--|--|--|--|--| | Mass of lot tonnes | Total number of units in lot | N 1) | n ²⁾ | $N \times n^{(3)}$ | | | | | | | | | | | | | | | | | | 0,050 | 1 | 1 | 5 | 5 | | | | | | | 0,100 | 2 | 2 | 3 | 6 | | | | | | | 0,150 | 3 | 3 | 3 and 2 | 7 | | | | | | | 0,200 | 4 | 4 | 2 | 8 | | | | | | | 0,250 | 5 | 5
6 | 2 and 1 | 9 | | | | | | | 0,300 to 0,400 | 6 to 8 | 6 | 2 and 1 | 9 | | | | | | | 0,450 to 0,550 | 9 to 11 | 7 | 2 and 1 | 10 | | | | | | | 0,600 to 0,700 | 12 to 14 | 8 | 2 and 1 | 11 | | | | | | | 0,750 to 0,850 | 15 to 17 | 9 | 2 and 1 | 11 | | | | | | | 0,900 to 1,050 | 18 to 21 | 10 | 2 and 1 | 12 | | | | | | | 1,100 to 1,300 | 22 to 26 | 11 | 2 and 1 | 13 | | | | | | | | 27 to 30 | 12 | 2 and 1 | 14 | | | | | | | 1,350 to 1,500 | 31 to 35 | 13 | 2 and 1 | 15 | | | | | | | 1,550 to 1,750 | 36 to 41 | 14 | 2 and 1 | 15 | | | | | | | 1,800 to 2,050 | 42 to 47 | 15 | 2 and 1 | 16 | | | | | | | 2,100 to 2,350 | i i | 16 | | 17 | | | | | | | 2,400 to 2,650 | 48 to 53 | | 2 and 1 | | | | | | | | 2,700 to 3,000 | 54 to 60 | 17 | 2 and 1 | 18 | | | | | | | 3,050 to 3,350 | 61 to 67 | 18 | 2 and 1 | 19 | | | | | | | 3,400 to 3,750 | 68 to 75 | 19 | 2 and 1 | 20 | | | | | | | 3,800 to 4,150 | 76 to 83 | 20 | 1 | 20 | | | | | | | 4,200 to 4,550 | 84 to 91 | 21 | 1 | 21 | | | | | | | 4,600 to 4,950 | 92 to 99 | 22 | 1 | 22 | | | | | | | 5,000 to 5,450 | 100 to 109 | 23 | 1 | 23 | | | | | | | 5,500 to 5,900 | 110 to 118 | 24 | 1 | 24 | | | | | | | 5,950 to 6,400 | iTeh ST 119 to 128ARD | PR25 V | H) VV 1 | 25 | | | | | | | 6,450 to 6,900 | 129 to 138 | 26 | 1 | 26 | | | | | | | 6,950 to 7,450 | (standards.ite | $h{28}^{27}i)$ | 1 | 27 | | | | | | | 7,500 to 8,000 | 150 to 160 | 28 | 1 | 28 | | | | | | | 8,050 to 8,550 | 161 to 171 | 29 | 1 | 29 | | | | | | | 8,600 to 9,150 | 172 to[\$837156:1991 | 30 | 1 | 30 | | | | | | | 9,200 to 9,750 | https://gtandarda.jtah.al84 to 195 | e9f9gb-6e3 | 5-4c3d-9001- | 31 | | | | | | | 9,800 to 10,400 | https://standards.iteh.a/galajog/sjandards/sist/9 | ie9f9gb-6e3: | 5-4C3G-9001- | 32 | | | | | | | 10,450 to 10,950 | 0209 k3722 c65/iso-7156 | 1991 ₃₃ | 1 | 33 | | | | | | | 11,000 to 11,750 | 222 to 235 | 34 | 1 | 34 | | | | | | | 11,800 to 12,400 | 236 to 248 | 35 | 1 | 35 | | | | | | | 12,450 to 13,150 | 249 to 263 | 36 | 1 | 36 | | | | | | | 13,200 to 13,850 | 264 to 277 | 37 | 1 | 37 | | | | | | | 13,900 to 14,600 | 278 to 292 | 38 | 1 | 38 | | | | | | | 14,650 to 15,400 | 293 to 308 | 39 | 1 | 39 | | | | | | | 15,450 to 16,150 | 309 to 323 | 40 | 1 | 40 | | | | | | | 16,200 to 17,000 | 324 to 340 | 41 | 1 | 41 | | | | | | | 17,050 to 17,800 | 341 to 356 | 42 | 1 | 42 | | | | | | | 17,850 to 18,650 | 357 to 373 | 43 | 1 | 43 | | | | | | | 18,700 to 19,550 | 374 to 391 | 44 | 1 | 44 | | | | | | | 19,600 to 20,400 | 392 to 408 | 45 | 1 1 | 45 | | | | | | | 20,450 to 21,350 | 409 to 427 | 46 | l i | 46 | | | | | | | | 428 to 445 | 47 | 1 | 47 | | | | | | | 21,400 to 22,250 | 446 to 464 | 48 | 1 | 48 | | | | | | | 22,300 to 23,200 | 465 to 483 | 49 | 1 | 49 | | | | | | | 23,250 to 24,150 | 484 to 500 | 50 | | 50 | | | | | | | 24,200 to 25,000 | 484 (0 500 | 30 | 1 |] 30 | | | | | | | | | J | J | L | | | | | | ¹⁾ N is the number of units sampled (primary increments). ²⁾ n is the minimum number of secondary increments from each of the N sampled units. ³⁾ The pairs of values for n (e.g. 3 and 2) shall be distributed randomly over the N sampled units so as to obtain the number $(N \times n)$ of secondary increments indicated. Table 2 — Sample selection from units of 250 kg | Mass of lot tonnes | Total number of units in lot | N 1) | n 2) | $N \times n^{(3)}$ | |--------------------|--|-------------------|---------------------|--------------------| | 0,250 | 1 | 1 | 9 | 9 | | 0,500 | 2 | | 5 | i e | | 0,750 | 3 | 2 | | 10 | | | _ | 3 | 4 and 3 | 11 | | 1,000 | 4 | 4 | 3 | 12 | | 1,250 | 5 | 5 | 3 and 2 | 12 | | 1,500 | 6 | 6 | 3 and 2 | 13 | | 1,750 | 7 | 7 | 2 | 14 | | 2,000 | 8 | 8 | 2 and 1 | 15 | | 2,250 | 9 | 9 | 2 and 1 | 16 | | 2,500 | 10 | 10 | 2 and 1 | 16 | | 2,750 | 11 | 11 | 2 and 1 | 17 | | 3,000 | 12 | 12 | 2 and 1 | 18 | | 3,250 | 13 | 13 | 2 and 1 | 19 | | 3,500 | 14 | 14 | 2 and 1 | 19 | | 3,750 | 15 | 15 | 2 and 1 | 20 | | 4,000 | 16 | 16 | 2 and 1 | 21 | | 4,250 | 17 | 17 | 2 and 1 | 22 | | 4,500 | 18 | 18 | 2 and 1 | 22 | | 4,750 | 19 | 19 | 2 and 1 | 23 | | 5,000 | 20 | 20 | | | | 5,250 | 21 | | 2 and 1 | 23 | | | | 21 | 2 and 1 | 24 | | 5,500 | 22 | 22 | 2 and 1 | 24 | | 5,750 | 23 | 23 | 2 and 1 | 25 | | 6,000 | iTeh S ²⁴ ANDAI | 2 ⁴ DT | 2 and 1 | 25 | | 6,250 | | 25 | V2 and VV | 26 | | 6,500 to 6,750 | 26 to 27 | s.izeh. | 2 and 1 | 27 | | 7,000 to 7,250 | 28 to 29 nd ard | s.iven. | lai) 1 | 27 | | 7,500 to 7,750 | 30 to 31 | 20 | 1 | 28 | | 8,000 to 8,250 | 32 to 33 | 29 | 1 | 29 | | 8,500 to 9,000 | 34 to 36 <u>ISO 715</u> | 6:199 3 0 | 1 | 30 | | 9,250 to 9,500 | https://standard37itt9.38catalog/standar | ds/sis3/95e9f | 9eb-6e35-463d-9001- | 31 | | 9,750 to 10,250 | 39 to 41/263b3758c65/i | | 1 | 32 | | 10,500 to 10,750 | 42 to 43 | 33 | 1 | 33 | | 11,000 to 11,500 | 44 to 46 | 34 | 1 | 34 | | 11,750 to 12,250 | 47 to 49 | 35 | 1 | 35 | | 12,500 to 12,750 | 50 to 51 | 36 | | 36 | | 13,000 to 13,500 | 52 to 54 | 37 | 1 | 37 | | 13,750 to 14,250 | 55 to 57 | 38 | i i | 38 | | 14,500 to 15,000 | 58 to 60 | 39 | | 39 | | 15,250 to 15,750 | 61 to 63 | 40 | | | | 16,000 to 16,750 | 64 to 67 | 41 | | 40
41 | | 17,000 to 17,500 | 68 to 70 | 41 | ! | | | | | | | 42 | | 17,750 to 18,250 | 71 to 73 | 43 | | 43 | | 18,500 to 19,250 | 74 to 77 | 44 | | 44 | | 19,500 to 20,000 | 78 to 80 | 45 | 1 1 | 45 | | 20,250 to 21,000 | 81 to 84 | 46 | 1 1 | 46 | | 21,250 to 22,000 | 85 to 88 | 47 | 1 | 47 | | 22,250 to 22,750 | 89 to 91 | 48 | 1 | 48 | | 23,000 to 23,750 | 92 to 95 | 49 | 1 | 49 | | 24,000 to 25,000 | 96 to 100 | 50 | 1 1 | 50 | ¹⁾ N is the number of units sampled (primary increments). ²⁾ n is the minimum number of secondary increments from each of the N sampled units. ³⁾ The pairs of values for n (e.g. 2 and 1) shall be distributed randomly over the N sampled units so as to obtain the number $(N \times n)$ of secondary increments indicated. Table 3 — Sample selection from units of 1 000 kg | Mass of lot tonnes | Total number of units in lot | N 1) | $n^{(2)}$ | $N \times n^{(3)}$ | |--------------------|------------------------------|------------------|-------------|--------------------| | 1,00 | 1 | 1 | 12 | 12 | | 2,00 | 2 | 2 | 8 and 7 | 15 | | 3,00 | 3 | 2
3 | 6 | 18 | | 4,00 | 4 | 4 | 5 | 20 | | 5,00 | 5 | 4
5
6
7 | 5 and 4 | 23 | | 6,00 | 6 | 6 | 5 and 4 | 25 | | 7,00 | 6 7 | | 4 and 3 | 27 | | 8,00 | | 8
9 | 4 and 3 | 29 | | 9,00 | 8 9 | 9 | 4 and 3 | 31 | | 10,00 | 10 | 10 | 4 and 3 | 33 | | 11,00 | 11 | 11 | 4 and 3 | 34 | | 12,00 | 12 | 12 | 3 and 2 | 35 | | 13,00 | 13 | 13 | 3 and 2 | 37 | | 14,00 | 14 | 14 | 3 and 2 | 38 | | 15,00 | 15 | 15 | 3 and 2 | 40 | | 16,00 | 16 | 16 | 3 and 2 | 41 | | 17,00 | 17 | 17 | 3 and 2 | 42 | | 18,00 | 18 | 18 | 3 and 2 | 42
43 | | 19,00 | 19 | 19 | 3 and 2 | 44 | | 20,00 | 20 | 20 | 3 and 2 | 45 | | 21,00 | 21 | 21 | 3 and 2 | 46 | | 22,00 | 22 | 22 | 3 and 2 | 47 | | 23,00 | 23 | 23 | 3 and 2 | 48 | | 24,00 | 24 | 24 | 3 and 2 | 49 | | 25,00 | iTeh STANDARD | 25 V | EW 2 | 50 | - 1) N is the number of units sampled (primary increments). iteh.ai) - 2) n is the minimum number of secondary increments from each of the N sampled units. - 3) The pairs of values for n (e.g. 3 and 2) shall be distributed randomly over the N sampled units so as to obtain the number $(N \times n)$ of secondary/increments indicated/standards/sist/95e9f9eb-6e35-4c3d-9001- 0263b3758c65/jso-7156-1991