SLOVENSKI STANDARD

Kabelska omrežja za televizijske in zvokovne signale ter interaktivne storitve 11. del: Varnost (IEC 60728-11:2005, spremenjen)
(istoveten EN 60728-11:2005)
Cable networks for television signals, sound signals and interactive services - Part 11: Safety (IEC 60728-11:2005, modified)
iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 60728-11:2006
https:/standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477-8d7dfdff4299/sist-en-60728-11-2006

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 60728-11:2006
https://standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477-
8d7dfdff4299/sist-en-60728-11-2006

Cable networks for television signals, sound signals and interactive services
 Part 11: Safety
 (IEC 60728-11:2005, modified)

Réseaux de distribution par câbles pour signaux de télévision, signaux de radiodiffusion sonore et services interactifs

Partie 11: Sécurité

(CEI 60728-11:2005, modifiée)

if hoin TANIDARD PREVIIEW
 (standards.iteh.ai)

SIST EN 60728-11:2006
https://standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477-
8d7dfdff4299/sist-en-60728-11-2006
This European Standard was approved by CENELEC on 2005-04-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
Central Secretariat: rue de Stassart 35, B-1050 Brussels

[^0]
Foreword

The text of documents 100/847A/FDIS + 100/847B/FDIS, future edition 2 of IEC 60728-11, prepared by Technical Area 5: Cable networks for television signals, sound signals and interactive services, of IEC TC 100, Audio, video and multimedia systems and equipment, was submitted to the IEC-CENELEC parallel vote.

Together with a common modification, prepared by the Technical Committee CENELEC TC 209, Cable networks for television signals, sound signals and interactive services, it was approved by CENELEC as EN 60728-11 on 2005-04-01.

This European Standard supersedes EN 50083-1:1993 + A1:1997 + A2:1997 + corrigenda Jul. 2000.
The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement
(dop) 2006-01-01
- latest date by which the national standards conflicting with the EN have to be withdrawn
(dow) 2008-04-01
Annexes ZA, ZB and ZC have been added by CENELEC.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 60728-11:2006

Endorsement notice

The text of the International Standard IEC 60728-11:2005 was approved by CENELEC as a European Standard with agreed common modifications as given below.

COMMON MODIFICATIONS

Contents

Add:
Annex ZA (normative) Special national conditions
Annex ZB (informative) A-deviations
Annex ZC (normative) Normative references to international publications with their corresponding European publications

Annex B

B. 1 Justification

Replace by:

B. 1 Introduction

A.C. power distribution s̊ystems using 14-network technology are equípped with a line-to-line voltage of 230 V (see Figure B.1). Such IT-networks have no N -conductor, and the a.c. mains power is supplied to the equipment from two of the three line conductors.(EN6095011, Annex V).

For a cable network covering an area with this type of IT power supply network, special initiative should be taken to ensure that the safety in the cable network is maintained. The following equipotential bonding arrangements described will provide necessary safety in such a network.

NOTE See also Annex ZA.

Bibliography

Replace the reference to IEC 60728-2:2002 by:
EN 50083-2:2001, Cable networks for television signals, sound signals and interactive services Part 2: Electromagnetic compatibility for equipment

Add the following annexes:

Annex ZA

(normative)

Special national conditions

Special national condition: National characteristic or practice that cannot be changed even over a long period, e.g. climatic conditions, electrical earthing conditions.

NOTE If it affects harmonization, it forms part of the European Standard.
For the countries in which the relevant special national conditions apply these provisions are normative, for other countries they are informative.

Clause Special national condition

6

Norway

In most parts of Norway the AC power distribution systems are built as IT networks with a line-to-line voltage of 230 V . In these cases the equipotential bonding within a cable network has to be performed according to Annex B of this standard.
In parts of Norway where the power distribution systems are built as TN-networks, these special national conditions can be disregarded and the equipotential bonding shall be performed according to Clause 6 of this standard.
11.2.2 Finland iTeh STANDARD PREVILEW

As the conductivity of earth in Finlahd ist lowerathan what is normal in many other countries, the earthing electrodes in 11.2.2 should be as shown in Figures 16 a), 16 b) or 16 c).

SIST EN 60728-11:2006
12.3

Finland ${ }^{\text {https://standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477- }}$
8d7dfdff4299/sist-en-60728-11-2006
The required wind pressure value is $700 \mathrm{~N} / \mathrm{m}^{2}$ for buildings up to 30 m .

Annex ZB

(informative)

A-deviations

A-deviation: National deviation due to regulations, the alteration of which is for the time being outside the competence of the CENELEC national member.

This European Standard falls under Directive 73/23/EEC.
NOTE (from CEN/CENELEC IR Part 2:2002, 2.17) Where standards fall under EC Directives, it is the view of the Commission of the European Communities (OJ No C 59, 1982-03-09) that the effect of the decision of the Court of Justice in case 815/79 Cremonini/Vrankovich (European Court Reports 1980, p. 3583) is that compliance with A-deviations is no longer mandatory and that the free movement of products complying with such a standard should not be restricted except under the safeguard procedure provided for in the relevant Directive.

A-deviations in an EFTA-country are valid instead of the relevant provisions of the European Standard in that country until they have been removed.

Clause Deviation

$9 \quad$ France

(Arrêté interministériel, 2 April 1991)
This regulation specifies, among many other parameters, the minimum distance between electric supply wires (isolated and not isolated, low-voltage and high-voltage) and any other installation (e.g, buildings, antennas, telecommunication lines, etc.).
The main clauses of this regulation which concern the cable networks are Clauses 12,25 , 26, 33, 33bis, $38,49,51,52$ and 63 irds.iteh.ai)
Clause 9 of this standard specifies distances of 10 mm (indoors) and 20 mm (outdoors) and this is not sufficient to cover overhead cables. As an example, the minimum distance between an overhead telecommunication line and an overhead low-voltage (up to 1 kV) electricity supply line shall be 1 m (Clause 33). This distance may be reduced under specified conditions (Clauses 51, 52 and 63).
This regulation specifies also the minimum distance from high-voltage lines. This distance varies from 1 m to 4 m depending on the voltage, on the isolation of the cable and on the location (built-up area or not) (Clauses 33 and 63)

France
(NF C 15100 - Décret nº 84-74 du 26 janvier 1984 modifié)
The use of TT distribution systems with 300 mA differential switching is not compatible with the interconnection of the earthing of two different buildings.

Annex ZC

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE Where an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Publication	Year	Title	EN/HD	Year
-	-	Coaxial cables Part 1: Generic specification	EN 50117-1	Series
IEC 60065 (mod)	2001	Audio, video and similar electronic apparatus - Safety requirements	EN 60065	2002
IEC 60364	Series	Electrical installations of buildings	$\begin{aligned} & \text { HD } 384 \\ & \text { HD } 60364 \end{aligned}$	Series
IEC 60529	1989	Degrees of protection provided by enclosures (IP Code)	$\begin{aligned} & \text { EN } 60529 \\ & + \text { corr. May } \end{aligned}$	$\begin{aligned} & 1991 \\ & 1993 \end{aligned}$
A1	1999 eln STANDARD PREVNEA1			2000
IEC 60825-1	1993	Safety of laser products	EN 60825-1	1994
A1	1997	Part 1: Equipment classification; di)	A1	2002
A2	2001	requirements and user's guide SIST EN 60728-11:2006	A2	2001
IEC 60825-2	12000.tanPart. 2: Safety of optical fibre/ 1887c8-2135-4c30EN-60825-2 communicationssystems			$2000{ }^{1)}$
IEC 60950-1 (mod)	2001	Information technology equipment -	EN 60950-1	2001
		Safety	+ A11	2004
		Part 1: General requirements	+ corr. April	2004
IEC 61024-1	1990	Protection of structures against lightning Part 1: General principles	-	-
ISO 3864-1	2002	Graphical symbols - Safety colours and safety signs Part 1: Design principles for safety signs in workplaces and public areas	-	-

[^1]
INTERNATIONAL STANDARD

Cable networks for television signals, sound signals and interactive services -

Part 11:

Safety

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 60728-11:2006
https://standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477-8d7dfdff4299/sist-en-60728-11-2006
© IEC 2005 - Copyright - all rights reserved
No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41229190211 Telefax: +41229190300 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission
Международная Электротехническая Комиссия

CONTENTS

FOREWORD 5
1 Scope 10
2 Normative references 10
3 Terms, definitions, symbols and abbreviations 11
3.1 Terms and definitions 11
3.2 Symbols 15
3.3 Abbreviations 15
4 General requirements 15
4.1 General 15
4.2 Mechanical requirements 16
4.3 Accessible parts 16
4.4 Laser radiation 16
5 Protection against environmental influences 16
6 Equipotential bonding and earthing 16
6.1 General requirements 16
6.2 Equipotential bonding mechanisms 17
6.3 Equipotentiall bonding in meshed systems................................ 18
6.3.1 References to other standards, $\$$ oiteh.ari) 18
6.3.2 General on a.c. mains 18
6.3.3 AC power distribution and connection of the protective conductor 18
6.3.4 Dangers and malfunction 19
6.3.5 Measures.......8.87dfofa209/sist.en.60728-11.20006. 19
7 Mains-supplied equipment 19
8 Remote power feeding in cable networks 20
8.1 Remote power feeding 20
8.1.1 Maximum allowed voltages 20
8.1.2 General provisions for equipment 20
8.1.3 Current-carrying capacity and dielectric strength of the components 20
8.2 Remote powering from subscriber premises 21
9 Protection against contact and proximity to electric power distribution systems 21
9.1 General 21
9.2 Overhead lines 21
9.2.1 Overhead lines up to 1000 V 21
9.2.2 Overhead lines above 1000 V 21
9.3 House installations up to 1000 V 21
10 System outlets and transfer points 22
10.1 General 22
10.2 System outlet 22
10.2.1 Fully isolated system outlet 22
10.2.2 Semi-isolated system outlet 22
10.2.3 Non-isolated system outlet with protective element 22
10.2.4 Non-isolated system outlet without protective element 23
10.3 Transfer point 23
11 Protection against atmospheric over-voltages and elimination of potential differences 23
11.1 General 23
11.2 Protection of the antenna system 23
11.2.1 Building equipped with a lightning protection system (LPS) 23
11.2.2 Building not equipped with an LPS 24
11.3 Earthing and bonding of the antenna system 24
11.3.1 Earthing and bonding mechanisms 24
11.3.2 Earth termination system 24
11.3.3 Earthing conductors 24
11.4 Over-voltage protection 25
12 Mechanical stability 25
12.1 General requirements 25
12.2 Bending moment 25
12.3 Wind-pressure values 25
12.4 Mast construction 26
12.5 Data to be published. 26
Annex A (informative) Use of shield wires to protect installations with coaxial cables 42
Annex B (informative), Special conditions using IT power line networks 45
Bibliography (stam.dar.dssiitelh.ai.). 50
SIST EN 60728-11:2006
Figure 1 - Example of equipotential bonding and earthing of a metap enclosure. 27
Figure 2 - Example of equipotential bonding and indirect earthing of a metal enclosure via a voltage-dependent protective device (in case of balancing currents) 28
Figure 3 - Example of equipotential bonding and earthing of a building installation (underground connection) 29
Figure 4 - Example of equipotential bonding and earthing a building installation (above ground connection) 30
Figure 5 - Example of equipotential bonding with a galvanic isolated cable entering a building (underground connection) 31
Figure 6 - Example of maintaining of equipotential bonding whilst a unit is removed 32
Figure 7 - Example of external safety equipotential bonding 33
Figure 8 - Example of equipotential bonding antennas and head ends 34
Figure 9 - Example of antenna-outdoor-mounting on buildings, where earthing is not required but recommended 35
Figure 10 - Examples of earthing mechanisms 36
Figure 11 - Example of an over-voltage protective device 37
Figure 12 - Example of application of a coaxial over-voltage protective device 38
Figure 13 - Example of bending moment of an antenna mast 39
Figure 14 - Example of the installation of a safety terminal in Japan 40
Figure 15 - Examples of installation of a lightning protection system in Japan 41
Figure 16 - Examples of earth electrodes in Finland 41
Figure A. 1 -Principle of Single Shield Wire 43
Figure A. 2 -Principle of Two Shield Wires 44
Figure B. 1 - IT power distribution systems in Norway 46
Figure B. 2 - Installation of a cabinet in the vicinity of the transforming station 46
Figure B. 3 - Example of installations located closer than 20 m to a transforming station 47
Figure B. 4 - Installations in a building 47
Figure B. 5 - Installations between buildings 48
Figure B. 6 - Cabinets for cable network and mains placed less than 2 m apart 48
Figure B. 7 - Cabinets for cable network and mains placed more than 2 m apart 49
Table 1 - Maximum operation voltage and maximum currents for coaxial cables in different cable network applications 20
Table A. 1 -Conductivity of different types of soil 42
Table A. 2 - Protections factors $\left(K_{p}\right)$ of protection measures against direct lightning strokes for buried cables 43

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

CABLE NETWORKS FOR TELEVISION SIGNALS, SOUND SIGNALS AND INTERACTIVE SERVICES -

Part 11: Safety

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national on regional publication shall be clearly indicated in the latter.
https://standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477-
5) IEC provides no marking procedure to indicate its approyal and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 60728-11 has been prepared by technical area 5: Cable networks for television signals, sound signals and interactive services, of IEC technical committee 100: Audio, video and multimedia systems and equipment.

This second edition cancels and replaces the first edition published in 1997 and its amendment 1 (2000). This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:
a) Clause 6, Equipotential bonding and earthing, has been rewritten.
b) Clause 8, Remote power feeding in cable networks, has been rewritten.
c) New informative Annex A: Use of shield wires to protect installations with coaxial cables
d) New informative Annex B: Special conditions using IT power line networks

The text of this standard is based on the following documents:

FDIS	Report on voting
$100 / 847$ A/FDIS	$100 / 896 /$ RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
IEC 60728 consists of the following parts, under the general title Cable networks for television signals, sound signals and interactive services:

Part 1: Methods of measurement and system performance
Part 2: Electromagnetic compatibility for equipment
Part 3: Active coaxial wideband distribution equipment
Part 4: Passive coaxial wideband distribution equipment
Part 5: Headend equipment
Part 6: Optical equipment
Part 7: Hybrid fibre coax outside plant status monitoring
Part 9: Interfaces of cabled distribution systems for digitally modulated signals
Part 10: System performance of return path
Part 11: Safety (this publication) Standarrds.iiteh.ail)
Part 12: Electromagnetic compatibility of systems
https://standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477-
The following differences exist insome countries60728-11-2006

Clause 6 :

- The following parts of the standard cannot be used in areas with an IT power distribution system:
- Examples of installations inside buildings described in 6.2 g) and shown in Figures 3 and 4 cannot be used in areas with an IT-network (Norway).
- Examples of installations inside buildings described in 6.2i) and shown in Figure 6 should be equipped with a galvanic isolator separating local earth from the cable network distribution lines (Norway).
- Examples of installations inside buildings described in 6.2.11 and shown in Figure 7 should be equipped with a galvanic isolator separating local earth from the cable network distribution lines (Norway).
- Subclauses 6.3.4, 6.3.4.1, 6.3.4.2 and 6.3.5 have no relevance for cable networks in areas with an IT power distribution system (Norway).
- Common earthing is not permitted due to electrical earthing conditions (France).

Subclause 6.2:

- Galvanic isolation should withstand a voltage of 1 kV r.m.s. during 1 min (France).
- The equipotential bonding method is not used in Japan (Japan).
- Earthing to gas networks as shown in Figures 3 and 4 is not admitted (Japan, Poland).

Subclause 8.1:

- Remote power feeding voltage shall not exceed 90 V AC r.m.s and the line-powering current shall not exceed 15 A (Japan).

Clause 9:

- The French regulation (arrêté interministériel, 2 April 1991) specifies, among many other parameters, the minimum distance between electric supply wires (isolated and nonisolated, low-voltage and high-voltage) and any other installation (for example, buildings, antennas, telecommunication lines, etc.). The main clauses of this regulation, which concern the cable networks, are Clauses 12, 25, 26, 33, 33bis, 38, 49, 51, 52 and 63. Clause 9 of this standard specifies distances of 10 mm (indoors) and 20 mm (outdoors), and this is not sufficient to cover overhead cables. As an example, the minimum distance between an overhead telecommunication line and an overhead low-voltage (up to 1 kV) electricity supply line should be 1 m (Clause 33). This distance may be reduced under specific conditions (Clauses 51, 52 and 63). This regulation specifies also the minimum distance from high-voltage lines. This distance varies from 1 m to 4 m depending on the voltage, on the isolation of the cable and on the location (built-up area or not) (Clauses 33 and 63) (France).
- For antennas in proximity of voltages up to 7000 V , the following applies in Japan:

```
1. Low voltage: }\leq600 V a.c. or \leq750 V d.c.; 
    Cable: }\quad\geq30\textrm{cm}\mathrm{ distance;
    Isolated wireiTTelh =60\textrm{cm}\mathrm{ distance.RID PREVIIEW}
    2. High voltage: >600 Y amqlogrC50 Y(c.Giv.ai)
    Cable: }\quad\geq40\textrm{cm}\mathrm{ distance;
    Isolated wire: }\quad\geq80\textrm{cm}\mathrm{ distance.728-11:2006
```

 https://standards.iteh.ai/catalog/standards/sist/371887c8-2135-4c30-9477-

Clause 10:

- The resistance to the equipotential point is not applied, because the bonding method is not used in Japan. Japanese regulations specify applying the safety terminal. The safety terminal withstands a continuous a.c. test voltage of 1000 V for a period of not less than 1 min and maintains an insulation resistance of not less than $1,0 \mathrm{M} \Omega$. Installation of a safety terminal at the junction point between the indoor cabling and the feeder cable of the distribution system is shown in Figure 14 (Japan).

Clause 11:

- A lightning protection system is applied in Japan for protection against atmospheric overvoltages and for the elimination of potential differences. In Japan, installation of a lightning protection system is necessary in the case where the topmost height of the construction exceeds 20 m , except in those cases where the construction is inside the safety zone of another lightning protection system (see Figure 15) (Japan).

Subclause 11.1.1:

- An equipotential bonding conductor is not used, because the bonding method is not used in Japan (Japan).

Subclause 11.2.2:

- An earth termination system is not used in Japan. Only a lightning protection system is applied (see Figure 15) (Japan).
- As the conductivity of earth in Finland is lower than what is normal in many other countries, the earthing electrodes in 11.2.2 should be as shown in Figures 16 a), 16 b) or 16 c) (Finland).

[^0]: © 2005 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

[^1]: ${ }^{1)}$ EN 60825-2 is superseded by EN 60825-2:2004 which is based on IEC 60825-2:2004.

