International Standard

Water quality - Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] Part 1: Static method

Qualité de l'eau - Détermination de la toxicité aigué létale de substances vis-à-vis d'un' poisson d'eau douce /Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)(- Plartie 1:Méthode statique ai)
First edition - 1984-12-01
ISO 7346-1:1984
https://standards.iteh.ai/catalog/standards/sist/07904c5a-34bd-43cd-ab1a-cb784690c7b1/iso-734.6-1-1984

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75% approval by the member bodies voting.

International Standard ISO 7346/1 was prepared by Technical Committee ISO/TC 147, Water quality.

ISO 7346-1:1984
https://standards.iteh.ai/catalog/standards/sist/07904c5a-34bd-43cd-ab1a-cb784690c7b1/iso-7346-1-1984

Water quality - Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae)] Part 1: Static method

0 Introduction

The three parts of ISO 7346 describe methods of determining the acute lethal toxicity of substances to the zebra fish (Brachydanio rerio Hamilton-Buchanan), but it must be emphasized that the recommended use of the zebra fish does not preclude the use of other species. The methodologies presented here may also be used for other species of freshwater, marine of brackish water fish, with appropriate modifications of, for example, dilution water quality and the temperature conditions of the test.

(standardsoiteh.ail

Within the three parts of ISO 7346, a choice can be made between static, semi-static and flow-through methods. The static test, described in ISO 7346/1 tadn which the solution is not renewed, has the advantage of requiring simple apparatus although the substance in the test vessel may become depleted during the course of the test and the general quality of the water may deteriorate. The flow-through method, described in ISO 7346/3, in which the test solution is replaced almost continuously, overcomes such problems but requires the use of more complex apparatus. In the semi-static procedure, described in ISO 7346/2, the test solutions are renewed daily, this method being a compromise between the other two.

The flow-through method can be used for most types of substances, including those unstable in water, but the concentrations of the test substance are determined wherever possible. The static method is limited to the study of substances whose tested concentrations remain relatively constant during the test period. The semi-static method can be used for testing
those substances whose concentrations can be maintained satisfactorily throughout the test by renewal of the solutions every 24 h .

To assist in the preparation and maintenance of concentrations of substances which may be lethal at concentrations close to that of their aqueous solubility, a small volume of solvent may be used, as specified in the methods.

1 Scope and field of application

This part of ISO 7346 specifies a static method for the determination of the acute lethal toxicity of substances soluble in water under specified conditions to a species of freshwater fish [Brachydanio terio Hamilton-Buchanan (Teleostei, Cyprinidae) 46 - commion name, zebra fish] in water of a specified quality.

The method is applicable for assigning, for each test substance, broad categories of acute lethal toxicity to Brachydanio rerio under the test conditions.

The results are insufficient by themselves to define water quality standards for environmental protection.

The method is also applicable when using certain other species of freshwater fish as the test organism. ${ }^{1)}$

The method may be adapted for use with other freshwater fish and marine and brackish water fish with appropriate modification of the test conditions, particularly with respect to the quantity and quality of the dilution water and temperature.

[^0]The results obtained from a test with one species cannot, however, be extrapolated to other species.

2 Principle

Determination, under specified conditions, of the concentrations at which a substance is lethal to 50% of a test population of Brachydanio rerio after exposure periods of 24 and 48 h to that substance in the ambient water. These median lethal concentrations are designated the 24 h LC50 and 48 h LC50. If appropriate, the test can be continued up to an exposure period of 96 h .

The test is carried out in two stages:
a) a preliminary test which gives an approximate indication of the acute median lethal concentrations and serves to determine the range of concentrations for the final test;
b) a final test, the results of which alone are recorded.

Where evidence is available to show that test concentrations remain relatively constant (i.e. within about 20% of the nominal values) throughout the test then either measured or nominal concentrations may be used in the estimation of the LC50. Where such analyses show that the concentrations present remain relatively constant but are less than about 80% of the nominal values, then the analytical values shall be used in estimating the LC50. Where evidence is not available to show that the test concentrations remained at an acceptable level throughout the test period or where it is known (or suspected) that the concentrations of the test chemical have declined significantly at any stage during the test then irrespective of whether or not chemical analytical data are available the LC50 cannot be defined, using this test method. In these cases the test is not necessarily invalidated but it can only be stated that the LC50 of the substance is $\leqslant x \mathrm{mg} / \mathrm{l}$, the value, \bar{x}, given being estimated from the nominal concentrations used.

3 Test organism and reagents

The reagents shall be of recognized analytical grade. The water used for the preparation of solutions shall be glass-distilled water or deionized water of at least equivalent purity.

3.1 Test organism

The test species shall be Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyprinidae), commonly known as the zebra fish. Each test fish shall have a total length of $30 \pm 5 \mathrm{~mm}$ and a mass of $0,3 \pm 0,1 \mathrm{~g}$. They shall be selected from a population of a single stock. This stock should have been acclimated and, in any case, maintained for at least 2 weeks prior to the test in dilution water, continuously aerated (using bubbled air) (see 3.2), under conditions of water quality and illumination similar to those used in the test. They shall be fed as normal up to the 24 h period immediately preceding the test.

Test fish shall be free of overt disease or visible malformation. They shall not receive treatment for disease during the test or in the 2 weeks preceding the test.

Environmental conditions for the maintenance and breeding of zebra fish are given in annex A.

3.2 Standard dilution water

The freshly prepared standard dilution water shall have a pH of $7,8 \pm 0,2$, and calcium hardness of approximately $250 \mathrm{mg} / \mathrm{l}$, expressed as calcium carbonate, and shall be prepared as follows.

Prepare the following solutions using distilled or deionized water:
a) Calcium chloride solution

Dissolve $11,76 \mathrm{~g}$ of calcium chloride dihydrate $\left(\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ in water and dilute to 1 litre.
b) Magnesium sulfate solution

Dissolve $4,93 \mathrm{~g}$ of magnesium sulfate heptahydrate $\left(\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right)$ in water and dilute to 1 litre.
c) Sodium hydrogen carbonate solution

Dissolve 2,59 g of sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)$ in water and dilute to 4 litre.

d) Potassium chloride solution

Dissolve $0,23 \mathrm{~g}$ of potassium chloride (KCl) in water and dilute to 1 litre.
b1/iso-7346-1-1984
Mix 25 ml of each of these four solutions and dilute to 1 litre with water.

Aerate the dilution water until the concentration of dissolved oxygen reaches its air saturation value (ASV) and the pH value is constant at $7,8 \pm 0,2$. If necessary, adjust the pH of the solution by adding sodium hydroxide solution or hydrochloric acid. The dilution water thus prepared shall receive no further forced aeration before use in the tests.

3.3 Stock solutions of test substances

A stock solution of the test substance should be prepared by dissolving a known amount of test substance in a defined volume of dilution water, deionized water or glass-distilled water. The stock solution should be prepared daily except where it is known that the material is stable in solution, in which case sufficient solution for use over 2 days may be prepared. To enable stock solutions to be prepared and to assist in their transfer to the test vessels, substances of low aqueous solubility may be dissolved or dispersed by suitable means, including ultrasonic devices and using organic solvents of low toxicity to fish. If any such organic solvent is used, its concentration in the test solution shall not exceed $0,1 \mathrm{ml} / \mathrm{I}$, and two sets of controls, one containing solvent at the maximum concentration used in any test vessel and offe without solvent or test substance, shall be included.

3.4 Test solutions

Test solutions are prepared by adding appropriate amounts of the stock solution of the test substance to the dilution water to give the required concentrations. It is recommended that when a stock solution is prepared in distilled or deionized water, no more than 100 ml of stock solution should be added per 10 l of dilution water.

4 Apparatus

All materials which may come into contact with any liquid into which the fish are to be placed, or with which they may come into contact, shall be inert and should not absorb the test substance significantly.

Usual laboratory equipment [including a dip-net, made of nylon or of another chemically inert material, for the control vessels and another for all the test vessels (4.1)], and

4.1 Test vessels

Test vessels shall have sufficient capacity (which may need to be greater than 10 I) with a large area of interface between the air and the test medium (of about $800 \mathrm{~cm}^{2}$ for 10 I of medium) and shall be equipped with a securely fixed and/close-fitting cover.
(standar
Before use, new test vessels shall be carefully washed and then rinsed successively with water and the dilution water. At the end of the test, the vessels shall be emptied, cleaned by appropriate means, rinsed with water tor remove all fracestof the test substance and cleaning aid, and dried. cb784690c7b1/iso-

Test vessels shall be rinsed with dilution water just before use.

4.2 Temperature control equipment

The temperature of the test solutions and the water in the stock tanks shall be regulated to $23 \pm 1^{\circ} \mathrm{C}$ by a suitable method.

5 Test environment

The preparation and storage of solutions, the holding of fish, and all the manipulations and tests shall be carried out in premises with an atmosphere free from harmful concentrations of airborne contaminants.

Take care to avoid any unwanted disturbance that may change the behaviour of the fish. All tests should be carried out under normal laboratory illumination with a daily photoperiod of 12 to 16 h .

6 Procedure

6.1 Condition of the fish

Whenever there is a change of stock population, a toxicity test using the method specified in this part of ISO 7346 should be
carried out using a suitable reference substance. The results of such tests shall be in reasonable agreement with results obtained previously in the same laboratory.

6.2 Preliminary test

Add at least 2,5 I, preferably 5 I , of standard dilution water (3.2) to each of six vessels and aerate if necessary to restore the concentration of dissolved oxygen to its air saturation value. Prepare test solutions by adding appropriate amounts of stock solution of the test substance (3.3) to five of the vessels in order to obtain an adequate range of concentrations, for example $1000 ; 100 ; 10 ; 1$ and $0,1 \mathrm{mg} / \mathrm{l}$. Nothing is added to the sixth vessel, which serves as a control. The solutions should be adjusted to and maintained at $23 \pm 1^{\circ} \mathrm{C}$.

Place five fish in each vessel.

At least twice a day for a suitable period, note the numbers of dead fish and the dissolved oxygen concentration in each vessel. Remove dead fish.

If there are insufficient data for establishing the range of concentrations required for the final test, repeat this preliminary test with alternative ranges of concentrations.

6.3 Final test

Select at least five concentrations, forming an approximately geometric series, for example $8 ; 4 ; 2 ; 1$; and $0,5 \mathrm{mg} / \mathrm{l}$, between 0 but including the lowest concentration killing all the fish in the preliminary test, and the highest non-lethal concentration in 48 h . This selected series of concentration should provide the possibility of obtaining mortalities of between 20 and 80% in at least three consecutive concentrations of the geometric series used, for estimation of the LC50.

In some instances, a narrower range of concentrations may be required to provide the necessary data and for others a wider range may be needed.

Take at least six test vessels and into each pour, for example, 101 of standard dilution water. Nothing is added to one of these (the control) but to the remainder add the different amounts of stock solution required to give the particular range of concentrations of test substance which has been selected for testing. If an organic solvent has been used to dissolve a substance, prepare a second "control" with the standard dilution water containing sufficient of the organic solvent to give the maximum concentration at which this solvent is present in any of the test solutions. When the test solution has been adjusted to $23 \pm 1^{\circ} \mathrm{C}$, place 10 fish in each of the vessels, as follows.

Select the fish at random from the stock and distribute them at random into the test vessels, without delay, using a small mesh dip-net of soft inert material. Discard any fish dropped or otherwise mishandled during the transfer. In a given test, all fish should be added within a period of 30 min .

The solutions shall not be forcibly aerated. Record the number
of dead fish in each vessel at least twice daily over the period of the test. Remove each dead fish from the vessel as soon as possible. Observations can be made more frequently, for example to enable median periods of survival to be calculated for each concentration.

Note any abnormal behaviour of the fish.
If possible, the concentration of the test substance in the test vessels and the stock solutions should be measured at least at the beginning and end of the test.

Measure the dissolved oxygen concentration, the pH and temperature in each vessel at least once daily and at the beginning and end of the test.

A suggested form suitable for recording the data is given in annex B.

7 Expression of results

7.1 Validity

Where computing facilities are available probit analysis can be applied. ${ }^{[1]}$

If insufficient data are available to estimate the LC50 at 24 and 48 h and, if available, at 72 and 96 h , record the minimum concentration in which 100% mortality occurred and the maximum concentration giving 0% mortality at 24; 48; 72; and 96 h . These concentrations will indicate the limits within which the LC50 probably lies.

8 Test report

The test report shall include the following information:
a) the chemical identity and any additional available information about the test substance;
b) the method of preparing the dilution water, stock solutions and test solutions;
c) all chemical, biological and physical data pertaining to the test not otherwise specified in this part of ISO 7346, including details of the acclimation conditions of the test fish, and the mass of fish in grams per litre;

The results shall be considered valid if the following requirements were fulfilled:
the data taken into account when assessing the validity a) the dissolved oxygen concentration in the test solutions $21^{\circ} \mathrm{CS}$. of the test II°) during the test was at least $60 \% \mathrm{ASV}$;

1) concentration of dissolved oxygen;

ISO 7346-1:1984
b) the concentrations of the test asubstance were not tandards/sist/(2) 9 mortality observed among control fish; known (or suspected) of having declined significantly 7 7b1/iso-7346-1-1984 throughout the test (but see clause 2);
c) the mortality of the control fish did not exceed 10%;
d) the proportion of control fish showing abnormal behaviour did not exceed 10 \%;
e) the 24 h LC50 of the reference chemical for the stock of fish was in reasonable agreement with results obtained previously in the same laboratory.

7.2 Estimation of LC50

Where a simple graphical estimation of the LC50 is considered adequate this can be obtained by plotting mortality (expressed as a percentage of test fish in each test vessel) against concentration of test substance. Using axes with linear scales this will produce a sigmoid relationship from which the LC50 can be derived by interpolating the concentration expected to cause 50 \% mortality (see figure 1).

It is more appropriate to plot the data on graph paper having axes with probability and logarithmic scales. Data plotted in this way should produce a linear relationship from which the LC50 can be interpolated as above (see figure 2).

Where estimation of slope and 95% confidence limits of this and the LC50 are required, the data can be analysed graphically. ${ }^{[2]}$
3) proportion of control fish showing abnormal behaviour;
4) LC50 of the reference substance;
e) a tabulated list showing the nominal concentrations tested (with chemical analytical values, where available), and the total percentage mortalities in each, 24 and 48 h , and, if available, at 72 and 96 h after the start of the test;
f) the LC50 values and confidence limits if available at 24 and 48 h , and, if available, at 72 and 96 h , of the substance tested; reference should be given to the method of calculation, and the method of chemical analysis, where applicable;
g) the slope of the concentration-response curve (and its 95% confidence limit if available):
h) a graphical illustration of the concentration-response relationship;
j) any unusual reactions by the fish under the test conditions and any visible external effects produced by the test substance;
k) any deviation from the procedure specified in this part of ISO 7346, and the reason for it;
m) a reference to this part of ISO 7346 .

9 Bibliography

[1] Finney, D.J. Statistical Methods in Biological Assay. Wycombe, United Kingdom, Griffin, 1978.
[2] Litchfield, J.T. and Wilcoxon, F. A simplified method for evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 96 1949: 99-113.
[3] Stephan, C.E. Measurements for calculating an LC50. Aquatic Toxicology and Hazard Evaluation. ASTM (1977), ST, p. 634.

iTeh STANDARI PREVIIEW (standards.iteh.ai)

ISO 7346-1:1984
https://standards.iteh.ai/catalog/standards/sist/07904c5a-34bd-43cd-ab1a-
cb784690c7b1/iso-7346-1-1984

Figure 1 - Graphical interpolation of LC50 (linear scales)

Figure 2 - Graphical interpolation of LC50 (logarithmic and probability scales)

Annex A
 Environmental parameters for maintenance and breeding of zebra fish (Brachydanio rerio Hamilton-Buchanan)

A. 0 Introduction

The species originates from the Coromandel coast of India where it inhabits fast flowing streams. It is a common aquarium fish, so that information about procedures for its care and culture can be found in standard reference books on tropical fish culture. Its biology has recently been reviewed by Laale ${ }^{[A 2]}$.

The fish rarely exceeds 45 mm in length. The body is cylindrical with 7 to 9 dark blue horizontal stripes on silver. These stripes run into the caudal and anal fins. The back is olive green. Males are slimmer than females and possess a golden sheen. Females are more silvery and the abdomen is distended particularly prior to spawning

At the end of 2 weeks, the males possess a deep golden sheen and the females are greatly distended with ova.

A. 4 Breeding stage

The spawning tank can be set up as follows.
Fill an empty tank with fresh tap water aged at $27^{\circ} \mathrm{C}$ for 48 h and place a plastic cage inside the tank under the lip allowing the fish a swimming space of volume about 1 litre. Place six females in the basket in the morning and feed with freeze-dried brine shrimp.

Add nine males to the basket in the evening and feed the fish once more with freeze-dried brine shrimp before the lights are switched off.

A. 1 Environmental parameters

Spawning is induced by
fteng is induced by the morning light and is completed temperature, pH and water hardness. Axelrod ${ }^{[\mathrm{A} 1]}$ states a temperature range of 15,5 to $43,3^{\circ} \mathrm{C}$ and a pH o 6,6 to ${ }^{\circ} 7,2$. C . Fish may be bred, reared and maintained in tap water with a total hardness as high as $300 \mathrm{mg} / \mathrm{kg}$ (as calcium carbonate) and a pH of 7,7 to 8,2 . The temperature is maintained at $26 \pm 1^{\circ} \mathrm{C}$ and raised to $27 \pm 1^{\circ} \mathrm{C}$ to induce spawning. cb784690. $7 \mathrm{~b} 1 /$ iso- 73 and leave the eggs to hatch.

A. 2 Material and methods

The fish may readily be spawned in glass tanks of capacity about 70 l . The fry are later transferred to a tank of capacity 200 I.

Since the adult fish are avid egg eaters, a method of protecting newly laid eggs and young fish is necessary. One method, used successfully, is to confine the adult fish in mesh cages in the water so that as the female lays her eggs these fall through the mesh to the bottom of the tank out of reach of the adults.

The mesh cages are made of plastic netting with 3 mm mesh, of dimensions approximately $250 \mathrm{~mm} \times 250 \mathrm{~mm} \times 80 \mathrm{~mm}$. They are clipped to the lips of the tank so that the whole of the upper edge of the cage is above water with the mesh dropping 60 mm into the water. An undergravel filter system should not be used to cleanse the water because it is likely to damage the eggs. The tanks should be illuminated for 8 h per day.

A. 3 Conditioning

This period lasts for approximately 2 weeks. Males and females are separated and fed on live food. This consists of white worms (enchytraeids), Daphnia and brine shrimp (Artemia). The density of stocking during conditioning is kept below 30 fish in tanks of capacity 70 l .

A. 5 Development of fry

The eggs hatch in 4 to 5 days, and the fry or alevins adhere to the side of the tank and remain motionless for 24 to 48 h . When the fry become free-swimming, feed them on suitable proprietary fish food of small particle size. At 3 weeks, the fry can be fed newly hatched brine shrimp and growth then becomes more rapid. After 1 month, they can be transferred to a 2001 tank and fed on a mixture of live and proprietary foods. The fish are sexually mature at 3 months and attain a length of $3,5 \mathrm{~cm}$. It should be noted that spontaneous abnormalities in the developing larvae have been observed in certain strains ${ }^{[A 6]}$.

Further studies indicate that a dietary factor is responsible for the deformities and that the zebra fish is especially susceptible to this factor (other species breed normally when fed the same proprietary fish food) [A4].

A. 6 Bibliography

[A1] Axelrod, H.P. Breeding Aquarium Fishes Book 1. T.F.H. Publication, 1967.
[A2] LAALE, H.W. The biology and use of zebra fish (Brachydanio rerio) in fisheries research. A literature review. J. Fish Biol. 10 (2) 1977: 121-173.

[^0]: 1) The following species of freshwater fish can be used, in addition to Brachydanio rerio, without modification to this part of ISO 7346

 - Cichlasoma nigrofasciatum (Teleostei, Cichlidae)
 - Lepomis macrochirus (Teleostei, Centrarchidae)
 - Oryzias latipes (Teleostei, Poeciliidae)
 - Pimephales promelas (Teleostei, Cyprinidae)
 - Poecilia reticulata (Teleostei, Poeciliidae)

