

Designation: E 2023 – 99

Standard Practice for Fabrication of Neutron Radiographic Sensitivity Indicators¹

This standard is issued under the fixed designation E 2023; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers the fabrication of Sensitivity Indicators (SI), which can be used to determine the relative quality of radiographic images produced by direct, thermal neutron radiographic examination.

1.2 The values stated in inch-pound units are regarded to be standard. The SI equivalents given in parentheses in the text are for information only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

- E 543 Practice for Evaluating Agencies Performing Nondestructive Testing²
- E 545 Method for Determining Image Quality in Direct Thermal Neutron Radiographic Examination²
- E 748 Practices for Thermal Neutron Radiography of Materials²
- E 1316 Terminology for Nondestructive Examinations²

3. Terminology

3.1 *Definitions*—For definitions of terms used in this practice, see Terminology E 1316, Section H.

4. Summary of Practice

4.1 The Sensitivity Indicator (SI) is used for qualitative determination of the sensitivity of detail visible on the neutron radiograph. It consists of a step wedge containing gaps and holes of known dimensions. Visual inspection of the image of this device provides subjective information regarding total radiographic sensitivity with respect to the step-block material, as well as optional subjective data, regarding detrimental levels of gamma exposure.

4.2 Neutron radiography practices are discussed in Practices E 748. The neutron radiograph used to determine image quality using the SI shall meet the requirements of Method E 545.

5. Significance and Use

5.1 The only truly valid image quality indicator is a material or component, equivalent to the part being neutron radiographed, with a known standard discontinuity, inclusion, omission or flaw (reference standard comparison part). The SI is designed to substitute for the reference standard, providing qualitative information on hole and gap sensitivity in a single unit. Fabrication in accordance with this practice is vital for accurate and consistent measurements.

5.2 This practice shall be followed for the fabrication of all SIs to be used with Method E 545 to determine image quality in direct thermal neutron radiography.

6. Basis of Application

6.1 *Qualification of Nondestructive Agencies*—If specified in the contractual agreement, NDT agencies shall be qualified and evaluated as described in Practice E 543. The applicable edition of Practice E 543 shall be specified in the contractual agreement.

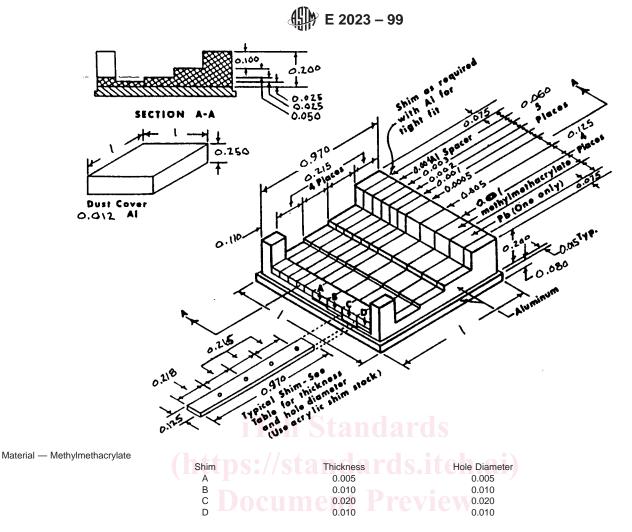
-6.2. *Procedures and Techniques*—The procedures and techniques to be utilized shall be as described in this practice unless otherwise specified. Specific techniques may be specified in the contractual agreement.

6.3 *Reporting Criteria/Acceptance Criteria*—Reporting criteria for the examination results shall be in accordance with Sections 9 and 10 unless otherwise specified. Acceptance criteria, for example, reference radiographs, shall be specified in the contractual agreement.

6.4 Reexamination of repaired/reworked items is not addressed in this practice and, if required, shall be specified in the contractual document.

7. Sensitivity Indicator (SI)

7.1 The Sensitivity Indicator (SI) shall be constructed of cast acrylic resin, lead (optional), and aluminum. The construction and dimensions are shown in Fig. 1.


7.2 The optional lead step in the SI may be replaced with a blank, cast acrylic resin step. The lead provides a visual indication of beam gamma content; however, the lead image is not used for any of the SI calculations of Method E 545.

¹ This practice is under the jurisdiction of ASTM Committee E-7 on Nondestructive Testing and is the direct responsibility of Subcommittee E07.05 on Radiology (Neutron) Method.

Current edition approved June 10, 1999. Published August 1999.

² Annual Book of ASTM Standards, Vol 03.03.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

NOTE 1-All dimensions are in inches.

Note 2—The lead step may be replaced with a methylmethacrylate strip with the D shim eliminated.

https://standards.iteh.ai/catalog/standards/FIG. 1 Sensitivity Indicator

7.3 The acrylic resin shall be methylmethacrylate.

7.4 All dimensional tolerances are as noted on the figures. 7.5 Aluminum shims and strips shall be 99.9 % pure el-

emental material.

7.6 The SI may be encased in a 6061 aluminum dust cover, 0.012-in. (0.305-mm) thick.

7.7 When used, the optional lead shim shall be at least 99.9 % pure elemental material.

8. Fabrication³

8.1 *Components*:

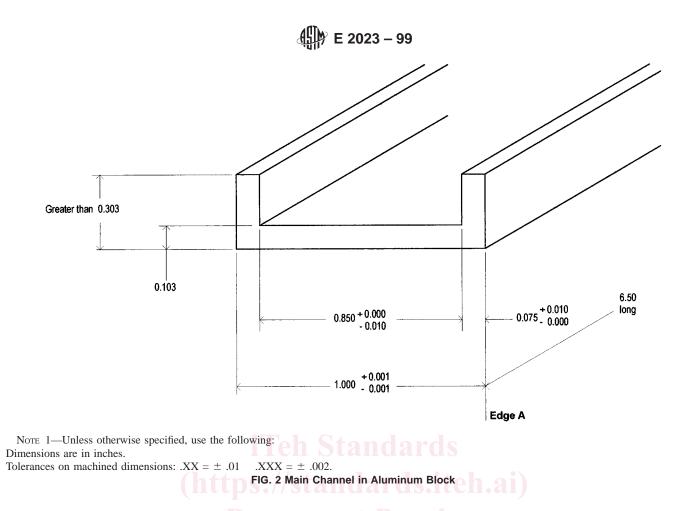
8.1.1 *Mill a Channel*, 0.850-in. (21.6-mm) wide \times 6.5-in. (165-mm) long from an aluminum block, 1-in. (25.4-mm) wide \times at least 0.303-in. (7.70-mm) high \times 6.5-in. (165-mm) long. The channel should begin 0.075-in. (1.90-mm) from edge A and leave 0.103-in. (2.62-cm) aluminum in the bottom of the channel (see Fig. 2).

8.1.2 Mill the A Channel (see Fig. 1), within this channel, 0.125-in. (3.18-mm) wide \times 0.005-in. (0.127-mm) deep \times

6.5-in. (165-mm) long. The near edge of channel A should be 0.450-in. (11.4-mm) from edge A (see Fig. 3).

8.1.3 *Mill the B Channel*, adjacent to the A channel, 0.125-in. (3.18-mm) wide \times 0.010-in. (0.254-mm) deep \times 6.5-in. (165-mm) long. The near edge of channel B should be 0.325-in. (8.26-mm) from edge A (see Fig. 3).

8.1.4 *Mill the C Channel*, adjacent to the B channel, 0.125-in. (3.18-mm) wide \times 0.020-in. (0.508-mm) deep \times 6.5-in. (165-mm) long. The near edge of channel C should be 0.200 in. (5.08 mm) from edge A (see Fig. 3).


8.1.5 *Optional*—Mill the D channel adjacent to the C channel, 0.125-in. (3.18-mm) wide \times 0.010-in. (0.254-mm) deep \times 6.5-in. (165-mm) long. The near edge of channel D should be 0.075-in. (1.90-mm) from edge A.

NOTE 1—The D channel is not required and shall not be milled if the lead shim is not to be used.

8.1.6 Prepare five methylmethacrylate strips, 0.060-in. (1.52-mm) thick \times at least 0.200-in. (5.08-mm) wide \times 6.5-in. (165-mm) long. These strips will be used in 8.2.11.

8.1.7 Prepare four methylmethacrylate strips, 0.125-in. (3.18-mm) thick \times at least 0.200-in. (5.08-mm) wide \times 6.5-in. (165-mm) long. One of the methylmethacrylate strips may be

³ The instructions in Section 8 assume the simultaneous fabrication of five units for practical reasons. Units may be fabricated singly, if desired.

replaced with an optional lead strip of the same dimensions. These strips will be used in 8.2.5.

8.1.8 Prepare one each strip from aluminum shim stock, at least 0.200-in. (5.08-mm) wide \times 6.5-in. (165-mm) long, with the following thickness:

0.0005 in. (0.0127 mm) 0.0010 in. (0.0254 mm) 0.0020 in. (0.0508 mm) 0.0030 in. (0.0762 mm) 0.0040 in. (0.102 mm) 0.0050 in. (0.127 mm) 0.0100 in. (0.254 mm)

8.1.9 Prepare one each methylmethacrylate strip to fit snugly in the 0.125-in. (3.18-mm) wide \times 6.5-in. (165-mm) long with the following thickness:

0.0050 in. (0.127 mm) (Shim A) 0.0100 in. (0.254 mm) (Shim B) 0.0200 in. (0.508 mm) (Shim C) 0.0100 in. (0.254 mm) (Shim D) (If used, this strip is to be fabricated from lead stock (see Fig. 4). These strips will become Shim A through Shim D in 8.1.10.)

8.1.10 Drill four holes in the shims from 8.1.9, starting 0.218 in. (5.54 mm) from one end and centering the other three holes 0.215 in. (5.46 mm) from the first hole. Repeat the process along the rest of the 6.5-in. (165-mm) length (see Fig. 4). The diameter of the holes are as follows:

Shim A 0.005-in. (0.127-mm) diameter Shim B 0.010-in. (0.254-mm) diameter Shim C 0.020-in. (0.508-mm) diameter Shim D 0.010-in. (0.254-mm) diameter, if optional Shim D is to be used. To verify that the various shims have the proper holes drilled into them, a certified hole measurement report is required.

8.1.11 To keep the SI intact during use, it is highly recommended that a dust cover be kept on the unit. One dust cover for each SI may be prepared from aluminum shim stock, 0.012-in. (0.305-mm) thick \times 1.50-in.² (38.1-mm²) by cutting out a 0.250-in.² (6.35-mm²) from each corner and folding the

aluminum to form a cover, 1-in.² (25.4-mm²) \times 0.250-in. (6.35-mm) high (see Fig. 1).

8.2 Assembly:

8.2.1 Insert Shim C into the C channel milled in 8.1.4 (see Fig. 5).

8.2.2 Insert Shim B into the adjacent B channel milled in 8.1.3 (see Fig. 5).

8.2.3 Insert Shim A into the adjacent A channel milled in 8.1.2 (see Fig. 5).

8.2.4 If the D channel was milled in 8.1.5, insert the lead shim (see Fig. 5).

8.2.5 Insert a 0.125-in. (3.18-mm) methylmethacrylate strip (previously prepared in 8.1.7) into the channel so that the second strip is positioned over Shim C. Over Channel D, insert either the optional lead strip or a 0.125-in. (3.18-mm) methylmethacrylate strip (see Fig. 6).

8.2.6 Insert the 0.010-in. (0.254-mm) thick aluminum strip next to the methylmethacrylate strip between the B and C channels (see Fig. 6).

8.2.7 Insert another 0.125-in. (3.18-mm) methylmethacrylate strip next to the aluminum strip (see Fig. 6).