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1. Scope

1.1 This guide presents briefly some generally accepted
methods of statistical analyses which are useful in the inter-
pretation of service life data. It is intended to produce a
common terminology as well as developing a common meth-
odology and quantitative expressions relating to service life
estimation.

1.2 This guide does not cover detailed derivations, or
special cases, but rather covers a range of approaches which
have found application in service life data analyses.

1.3 Only those statistical methods that have found wide
acceptance in service life data analyses have been considered
in this guide.

1.4 The Weibull life distribution model is emphasized in this
guide and example calculations of situations commonly en-
countered in analysis of service life data are covered in detail.

1.5 The choice and use of a particular life distribution model
should be based primarily on how well it fits the data and
whether it leads to reasonable projections when extrapolating
beyond the range of data. Further justification for selecting a
model should be based on theoretical considerations.

2. Referenced Documents

2.1 ASTM Standards:
ASTM Standard Guide for the Application of Basic Statis-
tical Methods to Weathering Tests

3. Terminology

3.1 Definitions:

3.1.1 material property—customarily, service life is consid-
ered to be the period of time during which a system meets
critical specifications. Correct measurements are essential to
producing meaningful and accurate service life estimates.

3.1.1.1 Discussion—There exists many ASTM recognized
and standardized measurement procedures for determining
material properties. As these practices have been developed

' This guide is under the jurisdiction of ASTM Committee G-3 on Weathering
and Durability and is the direct responsibility of Subcommittee G3.08 on Service
Life Prediction.
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within committees with appropriate expertise, no further elabo-
ration will be provided.

3.1.2 beginning of life—this is usually determined to be the
time of manufacture. Exceptions may include time of delivery
to the end user or installation into field service.

3.1.3 end of life—Occasionally this is simple and obvious
such as the breaking of a chain or burning out of a light bulb
filament. In other instances, the end of life may not be so
catastrophic and free from argument. Examples may include
fading, yellowing, cracking, crazing, etc. Such cases need
quantitative measurements and agreement between evaluator
and user as to the precise definition of failure. It is also possible
to model more than one failure mode for the same specimen.
(for example, The time to produce a given amount of yellowing
may be measured on the same specimen that is also tested for
cracking.)

3.1.4 F(t)—The probability that a random unit drawn from
the population will fail by time (7). Also F(z) = the decimal
fraction of units in the population that will fail by time (z). The
decimal fraction multiplied by 100 is numerically equal to the
percent failure by time (7).

3.1.5 R(t)—The probability that a random unit drawn from
the population will survive at least until time (7). Also R(t) =
the fraction of units in the population that will survive at least
until time (7)

R(t)=1-F(r) (1)
3.1.6 pdf—the probability density function (pdf), denoted
by f(t), equals the probability of failure between any two points

. . dF (1)
of time t(1) and t(2). Mathematically f(t) = ai

normal distribution, the pdf is the “bell shape” curve.

3.1.7 cdf—the cumulative distribution function (cdf), de-
noted by F(t), represents the probability of failure (or the
population fraction failing) by time = (t). See section 3.1.4.

3.1.8 weibull distribution—For the purposes of this guide,
the Weibull distribution is represented by the equation:

. For the

Fo=1-e (&) )
F(t) = defined in paragraph 3.1.4
t = units of time used for service life
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¢ = scale parameter
b = shape parameter
3.1.8.1 The shape parameter (b), section 3.1.6, is so called
because this parameter determines the overall shape of the
curve. Examples of the effect of this parameter on the distri-
bution curve are shown in Fig. 1, section 5.3.
3.1.8.2 The scale parameter (c), section 3.1.6, is so called
because it positions the distribution along the scale of the time
axis. It is equal to the time for 63.2 % failure.

Note 1—This is arrived at by allowing t to equal ¢ in the above
expression. This then reduces to Failure Probability = I1-e™', which
further reduces to equal 1-0.368 or .632.

3.1.9 complete data—A complete data set is one where all
of the specimens placed on test fail by the end of the allocated
test time.

3.1.10 Incomplete data—An incomplete data set is one
where (a) there are some specimens that are still surviving at
the expiration of the allowed test time, (b) where one or more
specimens is removed from the test prior to expiration of the
allowed test time. The shape and scale parameters of the above
distributions may be estimated even if some of the test
specimens did not fail. There are three distinct cases where this
might occur.

3.1.10.1 Time censored—Specimens that were still surviv-
ing when the test was terminated after elapse of a set time are
considered to be time censored. This is also referred to as right
censored or type I censoring. Graphical solutions can still be
used for parameter estimation. At least ten observed failures
should be used for estimating parameters (for example slope
and intercept).

3.1.10.2 specimen censored—Specimens that were still sur-
viving when the test was terminated after a set number of
failures are considered to be specimen censored. This is
another case of right censored or type I censoring. See 3.1.10.1
3.1.10.3 Multiply Censored—Specimens that were removed
prior to the end of the test without failing are referred to as left

0.5

censored or type II censored. Examples would include speci-
mens that were lost, dropped, mishandled, damaged or broken
due to stresses not part of the test. Adjustments of failure order
can be made for those specimens actually failed.

4. Significance and Use

4.1 Service life test data often show different distribution
shapes than many other types of data. This is due to the effects
of measurement error (typically normally distributed), com-
bined with those unique effects which skew service life data
towards early failure (infant mortality failures) or late failure
times (aging or wear-out failures) Applications of the prin-
ciples in this guide can be helpful in allowing investigators to
interpret such data.

Note 2—Service life or reliability data analysis packages are becoming
more readily available in standard or common computer software pack-

ages. This puts data reduction and analyses more readily into the hands of
a growing number of investigators.

5. Data Analysis

5.1 In the determinations of service life, a variety of factors
act to produce deviations from the expected values. These
factors may be of a purely random nature and act to either
increase or decrease service life depending on the magnitude of
the factor. The purity of a lubricant is an example of one such
factor. An oil clean and free of abrasives and corrosive
materials would be expected to prolong the service life of a
moving part subject to wear. A fouled contaminated oil might
prove to be harmful and thereby shorten service life. Purely
random variation in an aging factor that can either help or harm
a service life might lead a normal, or gaussian, distribution.
Such distributions are symmetrical about a central tendency,
usually the mean.

5.1.1 Some non-random factors act to skew service life
distributions. Defects are generally thought of as factors that
can only decrease service life. Thin spots in protective coat-
ings, nicks in extruded wires, chemical contamination in thin
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FIG. 1 Effect of the Shape Parameter (b) on the Weibull Probability Density
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metallic films are examples of such defects that can cause an
overall failure even through the bulk of the material is far from
failure. These factors skew the service life distribution towards
early failure times.

5.1.2 Factors that skew service life towards the high side
also exist. Preventive maintenance, high quality raw materials,
reduced impurities, and inhibitors or other additives are such
factors. These factors produce life time distributions shifted
towards the long term and are those typically found in products
having been produced a relatively long period of time.

5.1.3 Establishing a description of the distribution of fre-
quency (or probability) of failure versus time in service is the
objective of this guide. Determination of the shape of this
distribution as well as its position along the time scale axis are
the principle criteria for estimating service life.

5.2 Normal (Gaussian) Distribution—The characteristic of
the normal, or Gaussian distribution is a symmetrical bell
shaped curve centered on the mean of this distribution. The
mean represents the time for 50 % failure. This may be defined
as either the time when one can expect 50 % of the entire
population to fail or the probability of an individual item to
fail. The “scale” of the normal curve is the mean value (X), and
the shape of this curve is established by the standard deviation
value (o).

5.2.1 The normal distribution has found widespread use in
describing many naturally occurring distributions. Its first
known description by Carl Gauss showed its applicability to
measurement error. Its applications are widely known and
numerous texts produce exhaustive tables and descriptions of
this function.

5.2.2 Widespread use should not be confused with justifi-
cation for its application to service life data. Use of analysis
techniques developed for normal distribution on data distrib-
uted in a non-normal manner can lead to grossly erroneous
conclusions. As described in Section 5, many service life
distributions are skewed towards either early life or late life.
The confinement to a symmetrical shape is the principal
shortcoming of the normal distribution for service life appli-
cations. This may lead to situations where even negative
lifetimes are predicted.

5.3 Lognormal Distribution—This distribution has shown
application when the specimen fails due to a multiplicative
process that degrades performance over time. Metal fatigue is
one example. Degradation is a function of the amount of
flexing, cracks, crack angle, number of flexes, etc. Performance
eventually degrades to the defined end of life.?

5.3.1 There are several convenient features of the lognormal
distribution. First, there is essentially no new mathematics to
introduce into the analysis of this distribution beyond those of
the normal distribution. A simple logarithmic transformation of
data converts lognormal distributed data into a normal distri-
bution. All of the tables, graphs, analysis routines etc. may then
be used to describe the transformed function. One note of
caution is that the shape parameter o is symmetrical in its

2 [Ref. Mann, N.R. et al, Methods for Statistical Analysis of Reliability and Life
Data, Wiley, New York 1974) and Gnedenko, B.V. et al, Mathematical Methods of
Reliability Theory, Academic Press, New York 1969).

logarithmic form and non-symmetrical in its natural form. (for
example, ¥ = 1 *£ .20 in logarithmic form translates to 10 +5.8
and —3.7 in natural form)

5.3.2 As there is no symmetrical restriction, the shape of
this function may be a better fit than the normal distribution for
the service life distributions of the material being investigated.

5.4 Weibull Distribution—While the Swedish Professor
Waloddi Weibull was not the first to use this expression,* his
paper, A Statistical Distribution of Wide Applicability pub-
lished in 1951 did much to draw attention to this exponential
function. The simplicity of formula given in (1), hides its
extreme flexibility to model service life distributions.

5.4.1 The Weibull distribution owes its flexibility to the
“shape” parameter. The shape of this distribution is dependent
on the value of b. If b is less than 1, the Weibull distribution
models failure times having a decreasing failure rate. The times
between failures increase with exposure time. If b = 1, then the
Weibull models failure times having constant failure rate. If b
> 1 it models failure times having an increasing failure rate, if
b = 2, then Weibull exactly duplicates the Rayleigh distribu-
tion, as b approaches 2.5 it very closely approximates the
lognormal distribution, as b approaches 3. the Weibull expres-
sion models the normal distribution and as b grows beyond 4,
the Weibull expression models distributions skewed towards
long failure times. See Fig. 1 for examples of distributions with
different shape parameters.

5.4.2 The Weibull distribution is most appropriate when
there are many possible sites where failure might occur and the
system fails upon the occurrence of the first site failure. An
example commonly used for this type of situation is a chain
failing when only one link separates. All of the sites, or links,
are equally at risk, yet one is all that is required for total failure.

5.5 Exponential Distribution—This distribution is a special
case of the Weibull. It is useful to simplify calculations
involving periods of service life that are subject to random
failures. These would include random defects but not include
wear-out or burn-in periods.

6. Parameter Estimation

6.1 Weibull data analysis functions are not uncommon but
not yet found on all data analysis packages. Fortunately, the
expression is simple enough so that parameter estimation may
be made easily. What follows is a step-by-step example for
estimating the Weibull distribution parameters from experi-
mental data.

6.1.1 The Weibull distribution, (Eq 2) may be rearranged as
shown below: (Eq 3)

1 —F(r) = e_<5) ()
and, by taking the natural logarithm of both sides twice, this
expression becomes

1
In [lnl——F(t)] =biln(t)—blinc 4)
Eq 4 is in the form of an equation describing a straight line

(y = mx + y,) with

3 Weibull, W., “A statistical distribution of wide applicability”, J. Appl. Mech.,
18, 1951, pp 293-297
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