
Designation: E 2078 – 00

Standard Guide for
Analytical Data Interchange Protocol for Mass
Spectrometric Data1

This standard is issued under the fixed designation E 2078; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This guide covers the implementation of the Mass
Spectrometric Data Protocol in analytical software applica-
tions. Implementation of this protocol requires:

1.1.1 Specification E 2077, which contains the full set of
data definitions. The mass spectrometric data protocol is not
based upon any specific implementation; it is designed to be
independent of any particular implementation so that imple-
mentations can change as technology evolves. The protocol is
implemented in categories to speed its acceptance through
actual use.

1.1.2 Specification E 2077 contains a full description of the
contents of the data communications protocol, including the
analytical information categories with data elements and their
attributes for most aspects of mass spectrometric tests.

1.2 The analytical information categories are a practical
convenience for breaking down the standardization process
into smaller, more manageable pieces. It is easier for develop-
ers to build consensus and produce working systems based on
smaller information sets, without the burden and complexity of
the hundreds of data elements contained in all the categories.
The categories also assist vendors and end users in using the
guide in their computing environments.

1.3 The network common data format (NetCDF) data inter-
change system is the container used to communicate data
between applications in a way that is independent of both
computer architectures and end-user applications. In essence, it
is a special type of application designed for data interchange.

1.4 The common data language (CDL) template for mass
spectrometry is a language specification of the mass spectrom-
etry dataset being interchanged. With the use of the NetCDF
utilities, this human-readable template can be used to generate
an equivalent binary file and the software subroutine calls
needed for input and output of data in analytical applications.

2. Referenced Documents

2.1 ASTM Standards:
E 2077 Specification for Analytical Data Interchange Pro-

tocol for Mass Spectrometric Data2

2.2 Other Standard:
NetCDF User’s Guide 3

2.3 ISO Standards:4

8601:1988 Data elements and interchange formats, (First
edition published 1988-06-15; with Technical Corrigen-
dum 1 published 1991-05-01)

3. List of Contents and Use

3.1 NetCDF Toolkit—The protocol is an application pro-
gramming interface (API) layered on top of the public domain
NetCDF toolkit. NetCDF is a set of tools that facilitate reading
or writing platform-independent, self-describing data files. All
data in a NetCDF file is written using the external data
representation (XDR). XDR was developed by Sun Microsys-
tems and is used for platform-independent file systems for all
workstations and personal computers. Each NetCDF data
element is self-describing - it has a name, type, and dimen-
sionality. A NetCDF file contains three parts: a dimensions
section, which defines the names and size of all dimensions
used to describe variables; a variables section, which defines
the names, data types, dimensionality, and attributes for all
variables used in the file; and finally, a data section, which
contains the actual values assigned to the variables. Attributes
are numbers or strings which augment the description of
variables or the file as a whole.

3.1.1 For example, a variable “x_axis_ values” might con-
tain an array of numbers representing the abscissa of a
two-dimensional data set. It would have a dimension, possibly
named “x_axis_size,” which would specify the number of
abscissa points. The variable might have some descriptive
attributes, such as “units” (with a value of“ Seconds,” perhaps),
“scale_factor” (with a value of 1000.0, specifying that all
stored abscissa values should be multiplied by 1000.0 to get the
actual value), or “long_name” (with value“ Time”, which
might be used to label the abscissa when drawing a plot).

3.1.2 The NetCDF toolkit has been placed in the public
domain by the Unidata Program Center, a non-profit software

1 This guide is under the jurisdiction of ASTM Committee E13 on Molecular
Spectroscopy and Chromatography and is the direct responsibility of Subcommittee
E13.15 on Analytical Data.

Current edition approved March 10, 2000. Published July 2000.

2 Annual Book of ASTM Standards, Vol 03.06.
3 Available for Russell K. Rew, Unidata Program Center, University Corporation

for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000.
4 Available from ISO, 1 Rue de Varembe, Case Postale 56, CH 1211, Geneve,

Switzerland.

1

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

NOTICE: This standard has either been superseded and replaced by a new version or withdrawn.
Contact ASTM International (www.astm.org) for the latest information

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

support organization for the University Corporation for Atmo-
spheric Research. The Unidata Program Center is funded by
the National Science Foundation, National Center for Atmo-
spheric Research, and other organizations and provides ongo-
ing development and support of NetCDF and related tools.

3.1.3 The NetCDF version currently supported in this
implementation is 2.3.2.

3.2 Data Structures—Each of the analytical information
class tables in the specification document has a corresponding
data structure; however, not every field in each table has a
corresponding data element in a structure, and the data struc-
tures may have elements that do not appear in any class table.
Most of these differences are due to details of the implemen-
tation which could not be hidden.

3.2.1 The data structures provide the mapping between the
attribute name and data type described in the specification and
the field and actual data type in the file. The actual NetCDF
dimension, variable, and attribute names are hidden from the
API level. These names in fact are irrelevant for application
programs; it is the data structure which provides the informa-
tion interchange between the application and the file.

3.2.2 Each data structure and its mapping to an analytical
information class are described in detail later in this guide.

3.2.3 Application Programming Interface Functions:
3.2.3.1 The application programming interface provides

programmatic access to the contents of the files. Mass spectral
data occurs in three forms: global information, which relates to
the contents of the entire file, information which describes each
part of a multi-component instrument, and information which
changes on a scan-by-scan basis for spectra and library entries.
API functions are provided for opening a file for reading or
writing; closing a file; reading and writing global, per-
component instrument, and per-scan spectral and library infor-
mation; initializing and clearing data structure contents; and a
few miscellaneous utility functions. Each of these functions is
described in detail in a later section of this guide.

3.2.4 Enumerated Sets—Many of the attributes listed in the
Analytical Data Interchange Protocol for Mass Spectrometric
Data specification have an enumerated set of associated values.
The attribute may take only one value from that restricted set.
In the implementation, each such attribute is defined as a
formal C type, and the allowed values are defined as an
enumerated set of that formal type. Each enumerated value is
associated with a unique string literal, and it is these string
literals, not the enumeration values, which are written to or
read from the file. This practice both enforces the use of the
proper enumeration values and follows the NetCDF dictum
that files be self-describing. If the enumeration values were
written instead of the strings, then some lookup mechanism
would be required external to the NetCDF file to translate the
number into something meaningful.

4. Conventions

4.1 The format convention adopted in this guide is as
follows:

(1) Normal text is presented in this font (Times New
Roman).

(2) API symbols (functions, formal types, etc.) are pre-
sented in boldface Helvetica font.

(3) Parameters to API functions are presented in italic
Helvetica font.

(4) Example code is presented in normal Helvetica font.
4.2 Other Conventions—All indices begin at zero (C con-

vention). In several data structures, a scan_no or inst_no
element must be loaded before reading or writing. This
identifies the scan or instrument component number for which
data will be read or written. In all cases, scan or instrument
component numbers begin at zero.

4.2.1 All date/time stamps are formatted using the ISO
standard 8601 format referenced in the specification. An API
utility function is provided for conversion between date/time
information in numeric form and ISO-8601 string format (see
ms_convert_date(), below).

5. Mass Spectrometric Data Protocol Distribution Kit

5.1 It is intended that potential users of this implementation
can obtain a complete NetCDF and API distribution kit from
various instrument vendors’ Web sites. Information on how to
obtain the kit will be posted on the ASTM website
(www.astm.org) under Committee E01.25.

5.2 The Analytical Data Interchange Protocol for Mass
Spectrometric Data distribution kit contains:

5.2.1 Software—NetCDF distribution kit from Unidata
(with the modified makefile needed to make the kit compile out
of the box).

5.2.2 NetCDF User’s Guide—supplied by Unidata Program
Center.

5.2.3 Specification E 2077.
5.2.4 Guide E 2078.

6. Hardware and Software

6.1 This section describes the hardware and software con-
figurations used for testing. In general, the NetCDF system
puts very few requirements on the hardware because most
routines are left on disk. Only routines being used at any
particular time are kept in memory. Any limitations found were
typically those not imposed by NetCDF but ones imposed by
the operating system or environment.

6.1.1 Hardware (Personal Computers)—The personal com-
puter system hardware originally used for testing was:

6.1.1.1 Intel 80286 processor,
6.1.1.2 640K minimum,
6.1.1.3 Monochrome, EGA, VGA graphics,
6.1.1.4 20 megabyte minimum, 80 megabyte hard-disk is

typical, and
6.1.1.5 A mouse (optional).
6.1.1.6 NetCDF works well on AT-class machines and

higher. NetCDF does not have the items in 6.1.1.1-6.1.1.5 as
requirements. These are just the minimum, base-level systems
that were used.

6.1.2 Software—NetCDF runs on MS-DOS, OS/2, Macin-
tosh, Windows 95, and Windows NT operating systems for
personal computers. NetCDF was originally ported from UNIX
to DOS running on an IBM-PS/2 Model 80. It was recently
ported to the Macintosh OS. NetCDF is written in the C
programming language, and there are FORTRAN jackets
available for applications that want to use FORTRAN calls.

E 2078 – 00

2

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

The personal computer software originally employed for test-
ing and developing NetCDF applications was:

6.1.2.1 Microsoft DOS V3.3 or above,
6.1.2.2 Microsoft C Compiler V6.0,
6.1.2.3 Microsoft Windows V3.0,
6.1.2.4 Microsoft Windows SDK, and
6.1.2.5 NetCDF Version 2.0.1.
6.1.3 Workstations and Servers—NetCDF runs easily on

UNIX workstations such as Sun 3, Sun 4, VAXstations,
DECstation 3100, VAXstation II running ULTRIX or VMS,
and IBM RS/6000. There are no particular hardware require-
ments for workstation class machines, since all workstations
have the minimum hardware outlined for personal computers
in 6.1.1.

7. Significance and Use

7.1 General Coding Guidelines—The NetCDF libraries are
supplied to developers as source code. End users receive the
libraries in compiled binary form as part of a vendor’s
application.

7.1.1 Developers setting out to write a program to convert
their data files to the Mass Spectrometric Data Protocol should
consider using the NetCDF utilities ncgen and ncdump. After
developers create the NetCDF file they should use the ncdump
program to generate the ASCII representation of the data file,
and examine it to ensure the data are being correctly put into
the file.

7.2 Make Files for NetCDF Libraries and Utilities—In
general the compilation is straightforward. The make files were
modified after they were received from the Unidata Corpora-
tion, because they did not compile the first time on PCs. The
changes needed to get the Unidata distribution to run on DOS
are (1) rename the file MAKEFILE to UNIX.MK, and (2)
rename MSOFT.MK to MAKEFILE, and then run NMAKE.
The default switches in the Unidata distribution use the
switches for the floating point coprocessor and Microsoft
Windows options.

7.2.1 The protocol kit contains some complete makefile
examples for Microsoft C V6.0 running on DOS. The Mi-
crosoft C V6.0 compiler manual should be consulted for the
exact meaning of the compiler and linker options.

7.2.2 The VMS and SunOS compilation instructions are in
directories for those operating systems.

7.3 NetCDF Library Build Order—The NetCDF libraries
must be built in a specific order. The correct order to build the
NetCDF directories is:

UTIL
XDR
SRC
NCDUMP
NCGEN
NCTEST

7.3.1 The UTIL and XDR makefiles work as distributed
using NMAKE with Microsoft C V6.0.

8. CDL Template Structure

8.1 A NetCDF template is built from CDL statements and is
structured into three sections: (1) dimension declarations, (2)
variable declarations, and (3) the data section.

8.2 A few points of clarification about the CDL language are
given here to facilitate its understanding. For more in-depth
information on CDL, please consult the NetCDF User’s Guide.

8.2.1 A NetCDF template starts with the word “NetCDF”
followed by the dataset name.

8.2.2 CDL comments are indicated by two forward slash
characters (//).

8.2.3 Section indicators (dimensions:, variables:, and data:)
end with a colon character (:). These are the only tokens that
end with a colon character.

8.2.4 Statements within sections end with the semicolon
character (;).

8.2.5 Variable names beginning with numbers must be
preceded by an underline character (_). Otherwise the ncgen
parser will flag an error.

8.2.5.1 Underline characters were chosen for this protocol
over hyphen characters, because some compilers may interpret
hyphens as subtraction operators. The feature of CDL that
allows implicit numerical datatyping of attributes in not being
used in the first version of the template. Instead, all floating
point attributes are being handled as strings. This forces
programmers to explicitly type variables, thereby encouraging
more deliberate programming styles. For example:

:aia_template_revision = “0.8”; //M12345
:netcdf_revision = “2.0.1”; //M12345

Consult the NetCDF User’s Guide for more complete
information on CDL syntax and usage.

8.2.6 Underline characters only can be used as separators
between words within variable names, like:

aia-template-revision, or aia_template_revision.

8.2.7 Numerical data types for single values can be declared
implicitly by putting numbers on the right side of an assign-
ment statement, like:

peak_number=2; //number of peaks

These numerical datatypes can be floating point or integer
values, and can be implicitly datatyped as such.

:floating_point_attribute = 1.11; //M12345

8.2.8 Numerical data types can be declared explicitly by
preceding the variable definition by its data type. Datatype
assignments can be for either single value variable definitions
or for array variable definitions, for example:

float detector_maximum_value;
float ordinate_values(point_number);

There is also a way to explicitly declare datatypes on the
right side of an assignment operator. Please consult the
NetCDF User’s Guide for details.

8.2.9 Metadata are associated with a particular variable by
attaching it to that variable with a colon character, for example:

ordinate_values:uniform_sampling_flag=“ Y”;
ordinate_values:autosampler_position=“ 1.01”;

8.2.10 Global metadata can be declared simply by not
attaching it to any variable, for example:

:aia_template_revision= “0.8”; //M12345

8.2.11 String attributes can be as long as needed, and are
declared by enclosing the strings in quotation marks, for
example:

E 2078 – 00

3

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

:retention_unit= “time in seconds”;

8.3 Notes About the Mass Spectrometric Data Protocol
Usage of CDL—Some mandatory indicator codes (M-codes)
for data elements such as M1234, M1, etc., are given in some
comment fields of the protocol template. These are not part of
CDL syntax. These refer to whether a given data element is
mandatory for particular information categories, for example,
M1234 specifies that the data element is mandatory for
Categories 1, 2, 3, and 4. These M-codes are also given in the
Specification E 2077.

9. Other Usage Tips

9.1 Filename Extensions—The recommended filename ex-
tension is “.cdf,” so that the full name for a NetCDF file would
be “filename.cdf.” This is used so that parsers used to select
files can parse filenames based on the “.cdf” extension rather
than some other non-standard file extension.

9.2 Handling of a Missing Variable—The absence of a
variable implies that it is not in the file. For example, if a get
operation returns an error condition, this implies that the
variable does not exist in that file.

9.3 Performance Tip For Data Value Access—The point-
_number dimension was originally declared as“ unlimited”;
however, this was changed to a finite value because this change
allows getting and putting of an entire array at once. This
change is minor and will not affect programs, however, it
greatly improves performance. Using point_num as unlimited
restricts get/put operations to single values at a time, that is,
they are treated as records.

9.4 Getting Valid Date Time Stamps—In order to get the
correct date-time-stamp values in datasets originating from
DOS and OS/2 systems, the environment variable for time
zone must be set correctly. The recommended procedure is to
set the offset form Greenwich Mean Time (GMT) at product
installation time. Some examples of how to set the time-zone
environment variable are as follows:

9.4.1 The command “DOS-PROMPT>tz pst 8 pdt” sets the
time-zone variable to have a GMT offset of Pacific Standard
Time (pst), with a value of 8 h offset from GMT, at Pacific
Daylight Time (pdt).

9.4.2 The command “DOS-PROMPT>tz est 5 edt” sets the
time-zone variable to have a GMT offset of Eastern Standard
Time (est), with a value of 5 h offset for GMT, at Eastern
Daylight Time (edt).

10. Data Structures

10.1 The protocol data structures form the heart of the
information interchange. When reading a file, the API loads
information from the file into the fields of the data structures.
The application program is responsible for preparing the data
structures for use by the API functions, for removing the
information returned by the API, and for clearing the data
structures for subsequent use in another API call. When writing
a file, the API extracts information from the data structures and
writes it to the file. The application program is again respon-
sible for preparing and loading information into the data
structures and then clearing them after the API call.

10.1.1 It is important to emphasize that the application
program is responsible for the data structure contents. API
functions are provided to initialize and clear data structure
contents. These functions make several assumptions; in order
to ensure proper interaction of the protocol and applications
and to avoid memory allocation errors, these rules must be
followed:

(1) When using API functions to read from a file, the API
allocates memory for character strings and numeric arrays.
It is the applications’ responsibility to free this memory (using
free()) after the data structure contents have been used. Failure
to do so will result in a memory leak.

(2) When using API functions to write to a file, the API
assumes that the application has allocated memory for
character strings and numeric arrays. The API file writing
functions do not free this memory; however, API functions
which clear data structure contents assume that any non-NULL
pointers reference allocated memory, and will free the memory
and clear the pointers. It is acceptable to use pointers to
statically declared storage, but the application must ensure that
pointers to such storage are not passed to the data structure
initialization routines.

(3) When reading an interchange file, a NULL pointer will
be returned in character string or numeric array fields for which
no data is present in the file.

(4) When writing an interchange file, NULL pointers may
be passed in most cases for character strings or numeric arrays
for which no data are present or which are inappropriate or
inapplicable. Exceptions are noted in the sections below.

10.2 Administrative Information Class—
MS_Admin_Data. The MS_Admin_Data data structure
maps the administrative information class attributes and data
types. It is only referenced once in code, either when reading
from or writing to a file. MS_Admin_Data is a typedef. Table
1 describes the data structure fields, formal types, and mapping
to administrative information class attributes.

10.2.1 ms_admin_expt_t: Experiment Type—The default
value is shown in grey. See Table 2.

10.3 Instrument-ID Information Class—
MS_Instrument_Data. Instrument data occurs on a per-
component basis (that is, an instrument may be composed of
one or more instrument components. The total number of
components is defined using the ms_open_write () or is read
from the interchange file during ms_open_read () (see
below). When writing, the MS_Instrument_Data structure is
filled with the data for each instrument component in turn, and
then is written to the interchange file using successive API
calls. When reading, the number of instrument components is
returned in the MS_Admin_Data structure. Data for each
component is returned with successive API calls.

10.3.1 When both reading and writing, the inst_no field
must be filled with the index number of the component. These
index numbers are arbitrary, but must be sequential beginning
with zero. Other fields must be filled in by the application when
writing, or are filled by the API when reading. The application
is responsible for initializing the MS_Instrument_Data
structure before use, and for clearing its contents between API
calls. See Table 3.

E 2078 – 00

4

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

10.4 Sample Description Information Class—
MS_Sample_Data. The MS_Sample_Data structure oc-
curs once per interchange file. See Table 4.

10.4.1 ms_sample_state_t:—sample state. See Table 5.
10.5 Test Method Information Class—MS_Test_Data.

The MS_Test_Data structure occurs once per interchange

file. Depending on the specifics of the experiment which
generated the data set, many fields will most likely be
inappropriate or inapplicable. Only those fields which are
appropriate need be changed from the default values set during
initialization, and only those which have non-default values
will be read from or written to the interchange file. See Table
6.

TABLE 1 Data Structure Fields

MS_Admin_Data

Type Field Name EA MB Specification Attribute
charC dataset_completeness x data set completenessC

charC ms_template_revision x template revision levelC

charC comments administrative comments
charC dataset_origin data set origin
charC dataset_owner data set owner
charC experiment_title experiment title
charC experiment_date_time x experiment date/time stamp
(1)D experiment_type x experiment type
CharC experiment_x_ref_0 experiment cross-

referencesE

charC experiment_x_ref_1 experiment cross-
referencesE

charC experiment_x_ref_2 experiment cross-
referencesE

charC experiment_x_ref_3 experiment cross-
referencesE

charC netcdf_date_time x NetCDF file date/time stamp
charC netcdf_revision x NetCDF revision levelC

charC operator_name operator name
charC source_file_reference source file reference
charC source_file_format source file format
charC source_file_date_time source file date/time stamp
charC external_file_ref_0 external file referencesE

charC external_file_ref_1 external file referencesE

charC external_file_ref_2 external file referencesE

charC external_file_ref_3 external file referencesE

charC languages x languagesC

Long number_times_processed number of times processed
Long number_times_calibrated number of times calibrated
charC calibration_history_0 calibration historyE

charC calibration_history_1 calibration historyE

charC calibration_history_2 calibration historyE

charC calibration_history_3 calibration historyE

charC post_expt_program_name post-experiment program
name

charC pre_expt_program_name pre-experiment program
name

charC error_log error log
Long number_instrument_components (none)F

A The E column indicates that this is an enumerated set field. It is recorded in the
interchange file as a string literal, but is represented as an enumerated type in the
data structure.

B The M column indicates that this is a required field. When reading or writing an
interchange file, an error will be generated if a mandatory field is not filled in.

C These fields are present in the data structure, but do not need to be filled by
the application program when writing an interchange file. The API fills these fields
with the appropriate values. However, on reading a file, the contents of these fields
are filled with allocated strings, and must be freed by the caller.

D (1) Data type is ms_admin_expt_t
E These fields are defined in the specification as “string array” types. For

convenience of the implementation and to conserve space in the interchange file,
they are defined as separate strings here.

F The number of instrument components is returned in this field only when
reading an interchange file. It is not used when writing files.

TABLE 2 Experiment Type

ms_admin_expt_t

Value String literal Specification description
expt_centroid Centroided Mass Spectrum centroided mass spectrum
expt_continuum Continuum Mass Spectrum continuum mass spectrum
expt_library Library Mass Spectrum library mass spectrum

TABLE 3 MS_Instrument_Data

NOTE 1—There are no enumerated sets associated with MS_Instru-
ment_Data.

NOTE 2—All string fields in this structure are restricted to 32 characters
(including terminal NULL).

Type Field Name E M Specification Attribute

Long inst_no x instrument component number
charA name instrument component name
charA id instrument component id
charA manufacturer instrument component manu-

facturer
charA model_number instrument component model

number
charA serial_number instrument component serial

number
charA comments instrument component id com-

ments
charA software_version instrument component software

version
charA firmware_version instrument component firmware

version
charA operating_system operating system revision
charA application_software application software revision

A These fields are present in the data structure, but do not need to be filled by
the application program when writing an interchange file. The API fills these fields
with the appropriate values. However, on reading a file, the contents of these fields
are filled with allocated strings, and must be freed by the caller.

TABLE 4 MS_Sample_Data

Type Field Name E M Specification Attribute

charA owner sample owner
charA receipt_date_time sample receipt date/time stamp
charA internal_id internal sample id
charA external_id external sample id
charA procedure_name sampling procedure name
charA prep_procedure sample preparation procedure
(1)B state x sample state
charA matrix sample matrix
charA storage sample storage information
charA disposal sample disposal information
charA history sample history
charA prep_comments sample preparation comments
charA comments sample id comments
charA manual_handling manual handling precautions

A These fields are present in the data structure, but do not need to be filled by
the application program when writing an interchange file. The API fills these fields
with the appropriate values. However, on reading a file, the contents of these fields
are filled with allocated strings, and must be freed by the caller.

BData type is ms_sample_state_t

TABLE 5 ms_sample_state_t

Value String Literal Specification Description

state_solid Solid solid
state_liquid Liquid liquid
state_gas Gas gas
state_supercrit Supercritical Fluid supercritical fluid
state_plasma Plasma plasma
state_other Other State other state

E 2078 – 00

5

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

10.5.1 ms_test_separation_t:—separation method. See
Table 7.

10.5.2 ms_test_inlet_t:—mass spectrometer inlet. See
Table 8.

10.5.3 ms_test_ioniz_t:—ionization method. See Table 9.
10.5.4 ms_test_polarity_t:—ionization polarity. See Table

10.
10.5.5 ms_test_detector_t:—detector type. See Table 11.
10.5.6 ms_test_res_t:—resolution type. See Table 12.
10.5.7 ms_test_function_t:—scan function. See Table 13.
10.5.8 ms_test_direction_t:—scan direction. See Table

14.
10.5.9 ms_test_law_t:—scan law. See Table 15.
10.6 Raw Data Information Classes:
10.6.1 Raw Data Global Information Class—

MS_Raw_Data_Global. The MS_Raw_Data_Global
structure occurs once per interchange file. The only required
field is nscans, the number of spectral scans or library spectra
recorded in the set. See Table 16.

10.6.1.1 ms_data_mass_t:—mass axis units. See Table
17.

10.6.1.2 ms_data_time_t:—time axis units. See Table 18.
10.6.1.3 ms_data_intensity_t:—intensity axis units. See

Table 19.
10.6.1.4 ms_data_format_t:—data format. See Table 20.
10.7 Raw Data Per-Scan Information Class—

MS_Raw_Per_Scan. A copy of this structure is completed
once for each scan in the interchange file. When reading or
writing, the scan_no field is used to indicate the index
number of the scan (beginning at zero) to be read or written,
respectively. Scans can be read or written in ascending or
descending order; however, an error will occur if a scan
number outside the range of one to (nscans (see MS_Raw-
_Data_Global, above) is specified.

10.7.1 There are no enumerated types in the MS_Raw-
_Per_Scan data structure. See Table 21.

10.8 Library Data Per-Scan Information Class—
MS_Raw_Library—This structure occurs once per spectrum,
but only for experiment type expt_library. For other experi-
ment types, this structure is not used. An error will result when
trying to read or write library information for experiment types
other than expt_library. As in MS_Raw_Per_Scan, the
scan_no variable must be set to the desired scan index before

TABLE 6 MS_Test_Data

Type Field name E M Specification
Attribute

ms_test_separation_t separation_type x separation
experiment type

ms_test_inlet_t ms_inlet x mass spectrometer
inlet

Float ms_inlet_temperature mass spectrometer
inlet temperature

ms_test_ioniz_t ionization_mode x ionization mode
ms_test_polarity_t ionization_polarity x ionization polarity
Float electron_energy electron energy
Float laser_wavelength laser wavelength
charA reagent_gas reagent gas
Float reagent_gas_pressure reagent gas

pressure
charA fab_type FAB type
charA fab_matrix FAB matrix
Float source_temperature source temperature
Float filament_current filament current
Float emission_current emission current
Float accelerating_potential accelerating

potential
ms_test_detector_t detector_type x detector type
Float detector_potential detector potential
Float detector_entrance_potential detector entrance

potential
ms_test_res_t resolution_type x resolution type
charA resolution_method resolution method
ms_test_function_t scan_function x scan function
ms_test_direction_t scan_direction x scan direction
ms_test_law_t scan_law x scan law
Float scan_time scan time
charA mass_calibration_file mass calibration file

name
charA external_reference_file external reference

file name
charA internal_reference_file internal reference

file name
charA comments instrument

parameter
comments

A These fields are present in the data structure, but do not need to be filled by
the application program when writing an interchange file. The API fills these fields
with the appropriate values. However, on reading a file, the contents of these fields
are filled with allocated strings, and must be freed by the caller.

TABLE 7 ms_test_separation_t

Value String Literal Specification Description

separation_glc Gas-Liquid Chromatography gas-liquid chromatography
separation_gsc Gas-Solid Chromatography gas-solid chromatography
separation_nplc Normal Phase Liquid

Chromatography
normal phase liquid
chromatography

separation_rplc Reverse Phase Liquid
Chromatography

reverse phase liquid
chromatography

separation_ielc Ion Exchange Liquid
Chromatography

ion exchange liquid
chromatography

separation_selc Size Exclusion Liquid
Chromatography

size exclusion liquid
chromatography

separation_iplc Ion Pair Liquid
Chromatography

ion pair liquid
chromatography

separation_olc Other Liquid Chromatography other liquid chromatography
separation_sfc Supercritical Fluid

Chromatography
supercritical fluid
chromatography

separation_tlc Thin Layer Chromatography thin layer chromatography
separation_fff Field Flow Fractionation field flow fractionation
separation_cze Capillary Zone Electrophoresis capillary zone

electrophoresis
separation_other Other Chromatography other chromatography
separation_none No Chromatography no chromatography

TABLE 8 ms_test_inlet_t

Value String Literal Specification Description

inlet_membrane Membrane Separator membrane separator
inlet_capillary Capillary Direct capillary direct
inlet_opensplit Open Split open split
inlet_jet Jet Separator jet separator
inlet_direct Direct Inlet Probe direct inlet probe
inlet_septum Septum septum
inlet_pb Particle Beam particle beam
inlet_reservoir Reservoir reservoir
inlet_belt Moving Belt moving belt
inlet_apci Atmospheric Pressure

Chemical Ionization Inlet
atmospheric pressure
chemical ionization

inlet_fia Flow Injection Analysis flow injection analysis
inlet_es Electrospray Inlet electrospray inlet
inlet_infusion Infusion infusion
inlet_ts Thermospray Inlet thermospray inlet
inlet_probe Other Probe other probe inlet
inlet_other Other Inlet other inlet

E 2078 – 00

6

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

both reading and writing. An out-of-range index results in an
error. There are no enumerated types. See Table 22.

10.8.1 Size Restrictions on other Library String Fields
(including terminal NULL):

entry_id 32 bytes
source_data_file_reference 32 bytes
chemical_formula 64 bytes
wiswesser 128 bytes
smiles 255 bytes
other_structure 128 bytes
retention_reference_name 128 bytes
other_info 255 bytes

10.9 Raw Data Per-Scan-Group Information Class—
MS_Raw_Per_Group. This structure is only used when the
scan function is selected ion detection (function_sid), and
occurs once per scan group. The group_no variable must be
set to the desired group index before both reading and writing.
An out-of-range index results in an error.

There are no enumerated types. See Table 23.

11. Application Programming Interface

11.1 There are a number of commonly used functions
available in the application programming interface. These are
grouped as follows:

11.1.1 Opening and closing interchange files,
11.1.2 Reading and writing global data,
11.1.3 Reading and writing per-component instrument data,
11.1.4 Reading and writing per-scan raw and library data,
11.1.5 Data structure initialization and clearing, and

TABLE 9 ms_test_ioniz_t

Value String Literal Specification Description

ionization_ei Electron Impact electron impact
ionization_ci Chemical Ionization chemical ionization
ionization_fab Fast Atom Bombardment fast atom bombardment
ionization_fd Field Desorption field desorption
ionization_fi Field Ionization field ionization
ionization_es Electrospray Ionization electrospray ionization
ionization_ts Thermospray Ionization thermospray ionization
ionization_apci Atmospheric Pressure

Chemical Ionization
atmospheric pressure
chemical ionization

ionization_pd Plasma Desorption plasma desorption
ionization_ld Laser Desorption laser desorption
ionization_spark Spark Ionization sparkionization
ionization_thermal Thermal Ionization thermal ionization
ionization_other Other Ionization other ionization

TABLE 10 ms_test_polarity_t

Value String Literal Specification Description
polarity_plus Positive Polarity positive
polarity_minus Negative Polarity negative

TABLE 11 ms_test_detector_t

Value String Literal Specification Description

detector_em Electron Multiplier electron multiplier
detector_pm Photomultiplier photomultiplier
detector_focal Focal Plane Array focal plane array
detector_cup Faraday Cup Faraday cup
detector_dynode_em Conversion Dynode Electron

Multiplier
conversion dynode
electron multiplier

detector_dynode_pm Conversion Dynode
Photomultiplier

conversion dynode
photomultiplier

detector_multicoll Multicollector multi-collector
detector_other Other Detector other detector

TABLE 12 ms_test_res_t

Value String Literal Specification Description
resolution_constant Constant Resolution constant
resolution_proportional Proportional Resolution proportional

TABLE 13 ms_test_function_t

Value String Literal Specification Description

function_scan Mass Scan mass scan
function_sid Selected Ion Detection selected ion detection
function_other Other Function other function

TABLE 14 ms_test_direction_t

Value String Literal Specification Description

direction_up Up up
direction_down Down down
direction_other Other Direction other direction

TABLE 15 ms_test_law_t

Value String Literal Specification Description

law_linear Linear linear
law_exponential Exponential exponential
law_quadratic Quadratic quadratic
law_other Other Law other law

E 2078 – 00

7

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

11.1.6 Utility routines.
11.2 There are some additional API functions of lesser

importance; these are not required for normal use of the
protocol, but are described for completeness.

11.2.1 Note that, the header file “ms10.h” referenced below
existed in earlier, preliminary, non-ASTM implementations

also named “ms11.h” and subsequently “ms12.h”. It was
finally named, perhaps confusingly, “ms10.h” to indicate a
version “1.0” for the originally intended AIA standard.

11.3 File Open and Close—Interchange files are opened
either for reading or writing. On most operating systems,
opening a file for writing will destroy any existing file of the
same name (on VMS, a new version is created). A file opened
for reading must already exist. There are two file open API
calls, one for read access and one for write access. These
functions do much more than open the file; they read in or write
out NetCDF dimension names and sizes and variable names
and dimensionalities, respectively, and place the file in the
appropriate mode for further operations.

11.3.1 ms_open_read—open an interchange file for read-
ing:

Syntax:
#include “ms10.h”
int ms_open_read (char * filename)

Description:
The ms_open_read routine opens the interchange file

named by filename and associates a file identifier with it. Any
dimensions and variables defined in the file are read into
internal API data structures. The file must exist, be readable,
and be an interchange format file.

Return values:
If successful, the ms_open_read routine returns a non-

negative int file identifier for use in subsequent API calls. On
error, the routine returns the error code MS_ERROR (defined
in ms10.h).

TABLE 16 MS_Raw_Data_Global

Type Field name E M Specification Attribute

Long nscans x number of scans
Long starting_scan_no starting scan number
Int has_masses (none)A

Int has_times (none)A

Double mass_factor mass axis scale factorB

Double time_factor time axis scale factorB

Double intensity_factor intensity axis scale
factorB

Double intensity_offset intensity axis offsetC

ms_data_mass_t mass_units x mass axis units
ms_data_time_t time_units x time axis units
ms_data_intensity_t intensity_units x intensity axis units
ms_data_intensity_t total_intensity_units x total intensity units
ms_data_format_t mass_format x mass axis data format
ms_data_format_t time_format x time axis data format
ms_data_format_t intensity_format x intensity axis data format
charA mass_label mass axis label
charA time_label time axis label
charA intensity_label intensity axis label
Double mass_axis_global_min mass axis global rangeD

Double mass_axis_global_max mass axis global rangeD

Double time_axis_global_min time axis global rangeD

Double time_axis_global_max time axis global rangeD

Double intensity_axis_global_min intensity axis global
rangeD

Double intensity_axis_global_min intensity axis global
rangeD

Double calibrated_mass_min calibrated mass rangeD

Double calibrated_mass_max calibrated mass rangeD

Double run_time actual run time
Double delay_time actual delay time
Short uniform_flag uniform sampling flag
charA Comments raw data global

comments
A These fields are used only when reading an interchange file, and indicate the

presence of mass or time data, or both, in the interchange file. This allows
applications to set up in advance to receive mass or time data or both.

B Scale factors default to 1.0. Scale factors are used as follows: When reading
data arrays, the values returned in the arrays should each be multiplied by the
respective scale factor to obtain the true values. When writing data arrays, the
scale factor represents the divisor applied to the true values to obtain the values
recorded in the interchange file. In either case, the numbers present in the mass,
time, and intensity values arrays (see MS_Raw_Per_Scan data structure, below)
represent the scaled, not the true values. The application is responsible for
performing the appropriate scaling when reading or writing.

C The intensity axis offset defaults to 0.0. There are no offsets for the time or
mass axes. When reading, the offset should be added to the recorded intensity
values (after scaling) to obtain the true intensity values. When writing, the offset
should be subtracted from the true values (before scaling).

D These fields are defined in the specification as ranges; for convenience of
implementation, they are split into separate variables for minimum and maximum
values.

TABLE 17 ms_data_mass_t

Value String Literal Specification Description

mass_m_z M/Z m/z
mass_arbitrary Arbitrary Mass Units arbitrary units
mass_other Other Mass Units other units

TABLE 18 ms_data_time_t

Value String Literal Specification Description

time_seconds Seconds seconds
time_arbitrary Arbitrary Time Units arbitrary units
time_other Other Time Units other units

TABLE 19 ms_data_intensity_t

Value String Literal Specification Description

intensity_counts Total Counts total counts
intensity_cps Counts Per Second counts per second
intensity_volts Volts volts
intensity_current Current current
intensity_arbitrary Arbitrary Intensity Units arbitrary units
intensity_other Other Intensity other units

TABLE 20 ms_data_format_t

Value String Literal Specification Description

data_short Short short (16-bit signed integer)A

data_long Long long (32-bit signed integer)B

data_float Float float (32-bit floating point)
data_double Double double (64-bit floating point)

A Default for mass and time data.
B Default for intensity data.

E 2078 – 00

8

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

11.3.2 ms_open_write—open an interchange file for writ-
ing:

Syntax:
#include “ms10.h”
int ms_open_write (char * filename , ms_admin-

_expt_t expt_type, long nscans, long ninst, ms-
_data_format_t mass_fmt, ms_data_format_t time_fmt,
ms_data_format_t inty_fmt, int has_masses, int has-
_times)

Description:
The ms_open_write routine creates and opens the inter-

change file specified by filename and associates a file identifier
with it. The NetCDF dimension and variable definitions are
written to the file, then the file is placed in data recording

mode. The application must have the file system permissions
necessary to create and write to the file.

The other arguments are:
expt_type the enumerated set value which specifies the experi-

ment type.
nscans number of scans to be recorded
ninst number of instrument components (if zero, instrument

variables will not be defined in the file)
mass_fmt the enumerated set value which specifies the mass

values type
time_fmt the enumerated set value which specifies the time val-

ues type
inty_fmt the enumerated set value which specifies the intensity

values type

has_masses if non-zero, specifies that mass data will be recorded

TABLE 21 MS_Raw_Per_Scan

NOTE 1—Mass, time, and intensity arrays are declared as void *. In
use, however, they are declared as arrays of type appropriate to the mass,
time, and intensity data format (see MS_Raw_Data_Global, above),
and simply cast to void * in the data structure. On writing, the API
extracts the data and casts it back to the appropriate types before writing
to the file. On reading, the API creates new arrays of the correct types,
reads data into them, then casts to void * before returning to the
application.

Type Field name E M Specification Attribute

Long scan_no x scan number
Long actual_scan_no x actual scan number
Long points x number of points
voidA masses x mass axis valuesA

voidA times x time axis valuesA

voidA intensities x intensity axis valuesB

Long flags x number of flags
longA flag_peaks flagged peaksC

shortA flag_values flag valuesC

Double total_intensity total intensity
Double a_d_rate a/d sampling rate
Short a_d_coadditions a/d coaddition factor
Double scan_acq_time scan acquisition time
Double scan_duration scan duration
Double mass_range[2] mass scan range
Double time_range[2] time scan range
Double inter_scan_time inter-scan time
Double resolution resolution

A On reading, one of these pointers may be returned as NULL if the respective
data is not found in the file. On writing, if one of these types is not present for all
scans in the file, a NULL pointer may be passed in for the missing type. Either
mass values, time values, or both must be present. All mass/intensity or
time/intensity data occur as matched pairs; mass/time/intensity data occur as
matched triplets. Therefore, if mass/time/intensity values are present for one scan,
they must be present for all scans. Mass data is an array of mass_format type;
time data is an array of time_format type. All datum values, whether mass or
time, are recorded in ascending order.

On writing, if a scan has no data (points = 0), then NULL pointers may be
passed for masses, times, intensities, flag_peaks, and flag_values. On read-
ing, NULL pointers will be returned.

B Intensity axis values are an array of intensity_format type. There must be a
one-to-one match between intensity datum points and the corresponding mass,
time or mass/time point.

C On writing, these pointers may be passed as NULL if flags = 0. On reading,
NULL pointers will be returned if there are no flagged peaks.

On either reading or writing, the datum values in the flag_peaks array
correspond to the index of the peak in the mass or time values array (starting at
zero). For example, a scan with ten masses, the first, fifth, and sixth of which are
flagged, would have a flag_peaks array containing the values (0, 4, 5).

Flag_values datum points are each the logical OR of individual flag values, and
apply to the corresponding datum point in the flag_peaks array.

TABLE 22 MS_Raw_Library

Type Field name E M Specification Attribute

Long scan_no x (none)
charA entry_name x entry nameA

charA entry_id entry id
Long entry_number original entry number
charA source_data_file_reference source data file reference
charA cas_name CAS nameA

charA other_name_0 other namesA,B

charA other_name_1 other namesA,B

charA other_name_2 other namesA,B

charA other_name_3 other namesA,B

Long cas_number CAS number
charA formula chemical formula
charA wiswesser Wiswesser notation
charA smiles SMILES notation
charA molfile_reference MOL file reference name
charA other_structure other structure notation
Double retention_index retention index
charA retention_type retention index type
Double absolute_retention absolute retention time
Double relative_retention relative retention
charA retention_reference retention reference name
Long retention_cas retention reference CAS

number
Float mp melting point
Float bp boiling point
Double chemical_mass chemical mass
Long nominal_mass nominal mass
Double accurate_mass accurate mass
charA other_info other information

AThere are a maximum of six names (entry, CAS, and four other) permitted per
entry. A limit of 255 characters per name is imposed.

BThese fields are defined as a string array in the specification document; they
are implemented are separate string variables here for convenience.

TABLE 23 MS_Raw_Per_Group

Type Field name E M Specification Attribute

Long group_no x (none)
Long mass_count x number of masses in group
Long starting_scan x starting scan number
doubleA masses x group massesA

doubleA sampling_times sampling timesA

doubleA delay_times delay timesA

AThese are parallel arrays; that is, for every mass, there is a corresponding
sampling time and delay time entry. The delay time for the last mass in the group
may be set to zero (since there is no next mass).

Important—The API assumes that these three arrays have constant dimension-
ality equal to the maximum number of masses in any group. (See ms_write-
_group_global () and ms_read_group_global (), below). On input or output, the
API fills unused values with the floating point default. On file write, these arrays are
assumed to be defined (and owned) by the caller. On file read, the arrays will be
dynamically allocated by the API. It is the caller’s responsibility to free this storage
after use.

E 2078 – 00

9

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

has_times if non-zero, specifies that time data will be recorded;
one of these two arguments must be non-zero.

Return values:

If successful, the ms_open_write routine returns a non-
negative int file identifier for use in subsequent API calls. On
error, the routine returns the error code MS_ERROR.

11.3.3 ms_close—close an open file:

Syntax:
#include “ms10.h”
void ms_close (int file_id)

Description:
The ms_close routine closes the previously opened inter-

change file associated with the file identifier file_id and
disassociates the file identifier. No additional API calls may be
made using the file identifier after this call completes.

Return values:
No values are returned. Any errors are ignored.
11.4 Reading and Writing Global Data—Global data occurs

once per interchange file. Data structures which contain global
data are: MS_Admin_Data, MS_Sample_Data, MS_Test-
_Data, and MS_Raw_Data_Global. In the implementa-
tion, most of the fields in these data structures are written as
NetCDF dimensions or global attributes.

11.4.1 ms_read_global—read global information:

Syntax:
#include “ms10.h”
int ms_read_global (intfile_id , MS_Admin_Data *

admin_data , MS_Sample_Data* sample_data , MS_Test-
_Data * test_data, MS_Raw_Data_Global * raw_data)

Description:
Reads global information from the interchange file associ-

ated with file_id. The file must have been opened using
ms_open_read. Pointers to the data structures must be
non-NULL and reference valid structures. On return, the data
structure fields will be filled with values read from the
interchange file. See the discussion of data structure initializa-
tion and clearing, below.

Return values:
If the call is successful, the code MS_NO_ERROR is

returned. On an error, the code MS_ERROR is returned. An
error will occur if the file identifier is invalid, any data structure
pointer is NULL, memory allocation fails to allocate storage
for input data, or on an internal NetCDF error.

11.4.2 ms_write_global—write global information:

Syntax:
#include “ms10.h”
int ms_write_global (int file_id, MS_Admin_Data *

admin_data, MS_Sample_Data * sample_data, MS_T-
est_Data * test_data, MS_Raw_Data_Global * raw_data

)

Description:
Writes global information to the interchange file associated

with file_id. The file must have been opened using ms_open-
_write. Pointers to the data structures must be non-NULL and
reference valid structures. Values are extracted from the data
structure fields and are written to the interchange file. It is
important to initialize the data structures (using ms_init_glo-
bal ()) before filling them. Any data structure element which
has a NULL value will not be written. See the discussion of
data structure initialization and clearing, below.

Return values:
If the call is successful, the code MS_NO_ERROR is

returned. On an error, the code MS_ERROR is returned. An
error will occur if the file identifier is invalid, any data structure
pointer is NULL, or on an internal NetCDF error.

11.4.3 ms_read_group_global—read group global infor-
mation

Syntax:
#include “ms10.h”
int ms_read_group_global (int file_id, long * num-

ber_of_groups, long * maximum_number_of_masses_in-
_group)

Description:
The ms_read_group_global function retrieves global

scan group information from the interchange file associated
with file_id. The file must have been opened using ms_open-
_read. Scan group information is stored only for experiments
for which the scan function is function_sid. If the scan
function for the file is not function_sid or no scan group data
has been recorded in the file, zeros will be stored in the
locations pointed to by number_of_groups and maximum-
_number_of_masses_in_group.

Return values:
If the call is successful, the code MS_NO_ERROR is

returned. On an error, the code MS_NO_ERROR is returned.
An error will occur if the file identifier is invalid, any data
structure pointer is NULL, or on an internal NetCDF error.

11.4.4 ms_write_group_global—write group global infor-
mation.

Syntax:
#include “ms10.h”
int ms_write_group_global (int file_id, long number-

_of_groups, long maximum_number_of_masses_in-
_group)

Description:
The ms_write_group_global function defines global

scan group information to the interchange file associated with
file_id. The file must have been opened using ms_open-
_write. Scan group information is stored only for experiments
for which the scan function is function_sid. Scan group data

E 2078 – 00

10

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

https://standards.iteh.ai/catalog/standards/sist/cf10eae2-db3e-451f-9795-4bdddb16f9f2/astm-e2078-00

