INTERNATIONAL STANDARD

ISO 7703

Second edition 1995-09-01

Dried peaches — Specification and test methods

iTeh STANDARD PREVIEW Péches séchées — Spécifications et méthodes d'essai (standards.iteh.ai)

ISO 7703:1995 https://standards.iteh.ai/catalog/standards/sist/63f186da-5d84-4775-9930b4eea08bb34a/iso-7703-1995

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting. VIEW a vote.

(standards.iteh.ai) International Standard ISO 7703 was prepared by Technical Committee ISO/TC 34, Agricultural food products, Subcommittee SC 13 Dry and dried fruits and vegetables.

https://standards.iteh.ai/catalog/standards/sist/63f186da-5d84-4775-9930-

This second edition cancels and replaces^{a08}the^{4a/first⁷⁰³edition} (ISO 7703:1986), which has been technically revised.

Annexes A, B and C form an integral part of this International Standard.

© ISO 1995

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 \bullet CH-1211 Genève 20 \bullet Switzerland Printed in Switzerland

Dried peaches — Specification and test methods

1 Scope

This International Standard specifies requirements and test methods for dried peaches obtained from the fruits of the peach tree *Prunus persica* (L.) Batsch destined for human consumption.

2 Definitions

For the purposes of this International Standard, the RD PRI following definitions apply.

2.1 pest-infested dried peach: Dried peach damaged by insect infestation and/or mite infestation.

2.2 spoiled dried peach. Dried peach damaged by ds/size bruises, or darkened in colour, or showing hard tissue iso-7 or breakage, crushing or smears, or any other indications of disease.

2.3 immature dried peach: Dried peach obtained from an unripe peach, having poor colour and flavour, undesirable appearance and high shrinkage ratio.

2.4 halved peach: A peach that has been cut longitudinally into approximately equal halves.

2.5 sliced peach: A peach that has been cut longitudinally into several slices.

2.6 fermentation: A piece of dried peach damaged by fermentation to the extent that the characteristic appearance and/or flavour is substantially affected.

2.7 residual sulfur dioxide (SO_2) **content:** The quantity of sulfur dioxide determined in accordance with the method specified in annex B.

It is expressed in milligrams per kilogram.

2.8 moisture content: Conventionally, the loss in mass determined under the operating conditions specified in annex C.

3 Requirements

3.1 Description

Dried peaches are the sun-dried, tree-ripened fruits of *Prunus persica* (L.) Batsch. Dried peaches are prepared from sufficiently ripe fruits that have been peeled or left with the skin on, and cut into halves or segments. They shall be sound and clean.

3.2 Classification

teh.ai

Dried peaches shall be classified on the basis of colour, according to whether they are peeled, and the sistenessing of defects and extraneous matter as speciroffied in table 1. They may also be graded into various sizes according to their diameter (in the case of halves) and width or length (in the case of segments).

3.3 Odour and taste

Dried peaches shall have an odour and taste characteristic of the variety. They shall be free from foreign odour and odour traces coming from abnormal fermented peaches.

3.4 Freedom from insects, moulds, etc.

Dried peaches shall be free from living insects, mites or other parasites and moulds, and shall be practically free from dead insects, insect fragments and rodent contamination visible to the naked eye (corrected, if necessary, for abnormal vision) or with such magnification as may be necessary in any particular case. If the magnification exceeds \times 10, this fact shall be stated in the test report.

3.5 Extraneous matter

The proportion of extraneous matter, such as dirt, pieces of skin (only for peeled dried peaches), stem,

leaf, pieces of pit and other foreign matter, adhering to the flesh or not, shall not exceed the values given in table 1 according to the class.

3.6 Pest-infested and spoiled dried peaches

The proportion of pest-infested and spoiled dried peaches shall not exceed the values given in table 1 according to the class.

3.7 Colour

The colour of dried peaches shall be light sufficiently attractive and characteristic of the variety, with slight browning of the cut edges, or light brown.

3.8 Moisture content

The moisture content of dried peaches shall not exceed 20 % (m/m).

3.9 Sulfur dioxide content

4.2 Tolerances The content of residual sulfur dioxide shall not exceed the values given in table 1, according to the class. Subject to agreement between the interested parties, standar colerances with respect to characteristics and size

3.10 Mineral impurities

may be allowed in each package (or in each lot for ISO 77 product transported in bulk) for product not satisfying The acid-insoluble ash yield shall not exceeded g/kg log/standathe ster quite ments of the class indicated. b4eea08bb34a/iso-7703-1995

Classification Δ

4.1 Classes

Dried peaches are classified into three classes defined in 4.1.1 to 4.1.3.

4.1.1 Extra class

Dried peaches in this class shall be of superior quality. They shall be characteristic of the variety and/or commercial type. They shall have a uniform colour. They shall be practically free from defects, provided that these do not affect the general appearance of the product, the quality, or its presentation in the package. Peaches in this class shall not exceed the allowable percentages for the various defects given in table 1.

4.1.2 Class I

Dried peaches in this class shall be characteristic of the variety and/or commercial type. They shall satisfy the requirements given in table 1.

5 Sampling

It is important that the laboratory receive a sample which is truly representative and has not been damaged or changed during transport or storage.

Methods of sampling dry and dried fruits and vegetable products will form the subject of a future International Standard

Test methods 6

Samples of dried peaches shall be tested for conformity of the product to the requirements of table 1 by the test method specified in annex A.

The residual sulfur dioxide content (3.9) shall be tested in accordance with annex B, and the moisture content (3.8) in accordance with annex C.

NOTE 1 An example of the method for the determination of acid-insoluble ash is given in ISO 9301).

The following slight defects are allowed, provided that these do not affect the general appearance of the product, the quality, the keeping quality, or presentation in the package:

- skin defects;
- coloration defects.

4.1.3 Class II

This class includes dried peaches which do not qualify for inclusion in the higher classes but which satisfy the requirements specified in table 1.

The following defects are allowed, provided that the dried peaches retain their essential characteristics as regards general appearance, guality and presentation:

- skin defects:
- coloration defects.

¹⁾ ISO 930:1980, Spices and condiments — Determination of acid-insoluble ash.

7 Packing and marking

7.1 Packing

Dried peaches shall be packed in clean, sound and dry containers made of materials which do not affect the product. If wooden boxes are used, they shall be lined with a suitable paper.

For direct consumption, small consumer packages may be used. The quantities packed in such packages are usually 0,5 kg, 1,0 kg or 2,5 kg net mass but, if required, other quantities may be used. A suitable number of such small packages shall be placed in large wooden or cardboard cases.

The size of the packages and the number of small packages packed in a case shall be subject to agreement between the purchaser and vendor. However, the mass of the large containers or cases shall not be more than 25 kg.

7.2 Marking

The container and case shall be marked or labelled with the following particulars:

- a) name of the product or variety, and the trademark or brand name, if any;
- b) name and address of the producer or packer;
- c) code or batch number;
- d) net mass or gross mass (according to the request of the importing country);
- e) class of product;
- f) producing country;
- g) expiry date;
- any other marking required by the purchaser, such as year of harvest and date of packing (if known);

iTeh STANDARD ⁱ⁾ reference to this International Standard (optional). (standards.iteh.ai)

ISO 7703:1995 https://standards.iteh.ai/catalog/standards/sist/63f186da-5d84-4775-9930b4eea08bb34a/iso-7703-1995

63	
	t,
	5
	-
	S
- H	

https://standards.ite/n.ai/catalog/standards/sist/63f186da-5d84-4775-9930-ISO 7703:1995

Class	Pest-infested	Spoiled	fruits	Extraneous matter	Colour	Deviation from the main colour	Residual SO ₂	Fermentation
	% (<i>m/m</i>) max.		% (<i>m/m</i>) max.	% (<i>m/m</i>) max.	% (<i>m/m</i>) max.			
Extra	-	5	-	0,5	Light, characteristic of the va- riety with slight browning of cut edges	7	0,10	0,5
Class I	2	m	7	1,0	Light, characteristic of the va- riety with slight browning of cut edges	۵	0,14	1,0
Class II	m	4	4	1,5	Light brown	10	0,20	2,0

Table 1 — Requirements by class

Annex A

(normative)

Determination of the content of pest-infested and spoiled dried peaches, immature fruits, extraneous matter and deviations from main colour

A.1 **Principle** where m₀ is the mass, in grams, of the test portion; Visual inspection of a test portion of dried peaches. Physical separation of pest-infested and spoiled dried is the mass, in grams, of the relevant cat m_1 peaches, immature fruits, extraneous matter and egory (see A.2). dried peaches which show deviations from the main 11 en STANDAR colour. **A**.4 Test report (standards.iteh.ai The test report shall specify A.2 Procedure ISO 7703:1995 the method, in accordance with which sampling Weigh, to the nearest 0,02 gradest portion of about ds/sist/631 500 g. Separate carefully, by hand or using tweezers/iso-7703-1995 the pest-infested and spoiled dried peaches, ex-- the method used, traneous matter and the dried peaches which show deviations from the main colour. - the test result obtained, and Weigh, to the nearest 0,02 g, each of the categories - if the repeatability has been checked, the final separately. quoted result obtained. It shall also mention all operating details not specified in this International Standard, or regarded as optional, A.3 Expression of results together with details of any incidents which may have The proportion, expressed as a percentage by mass, influenced the test result. of each category separately is equal to The test report shall include all information necessary $\frac{m_1}{m_0} \times 100$ for the complete identification of the sample.

5

Annex B

(normative)

Determination of residual sulfur dioxide content: Spectrometric method using tetrachloromercurate(II) p-rosaniline

B.1 Principle

Colour development by the addition of p-rosaniline solution to a test solution prepared from dried peach which has been treated with sodium tetrachloromercurate(II) solution. Measurement using a spectrometer of the absorbance of the test solution at a D wavelength of 550 nm against a blank.

volumetric flask (B.3.3). Dissolve it in about 1 900 ml of water, dilute to the mark with water and mix.

B.2.5 Hydrochloric-acid-bleached p-rosaniline hydrochloride [bis(4-aminophenyl)-4-amino-3-tolylhydroxymethane] solution (C₂₀H₂₁N₃O·HCI).

Place 100 mg of *p*-rosaniline hydrochloride and standar 200 mi of water in a 1 000 ml one-mark volumetric flask. Add 160 ml of hydrochloric acid (concentrated acid diluted 1:1 with water) and dilute to the mark

B.2 Reagents

Use only reagents of recognized analytical grade and stand with water Allow to stand for 12 h before use. distilled or demineralized water or water of equivalent/8bb34a/iso-7703-1995 B.2.6 Sulfur dioxide standard purity.

B.2.1 Sulfuric acid solution,

 $c(H_2SO_4) = 0.25 \text{ mol/l.}$

B.2.2 Sodium hydroxide solution,

c(NaOH) = 0.5 mol/l.

B.2.3 Formaldehyde solution, c(HCHO) 0,015 % (m/m), prepared from 40 % (m/m) formaldehyde by diluting in two steps: 10 to 1000, then 75 to 2000.

B.2.4 Sodium tetrachloromercurate(II) solution

WARNING - Mercury(II) salts are very toxic, particularly in aqueous solution. Use skin and respiratory protection when handling dry mercury(II) salts. Use skin protection when handling concentrated solutions of mercury(II) salts.

Place 23,4 g of sodium chloride (NaCl) and 54,3 g of mercury(II) chloride (HgCl₂) in a 2 000 ml one-mark

solution (SO₂), corresponding to about 100 mg of SO₂ per litre.

Dissolve about 170 mg of sodium hydrogensulfite (NaHSO₃) in water in a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix. Standardize with an iodine standard reference solution [c(I) = 0,01 mol/I] before use.

1 ml of this standard solution contains about 100 µg of SO₂.

B.3 Apparatus

Usual laboratory equipment and, in particular, the following.

B.3.1 Spectrometer, with selectors for continuous or discontinuous variation, suitable for measurement of absorbance at a wavelength of 550 nm.

B.3.2 Fruit chopper, made of a material which does not absorb moisture.

B.3.3 One-mark volumetric flasks, short-necked, of capacity 100 ml, 1 000 ml and 2 000 ml.

B.3.4 Blender, of capacity at least 300 ml.

B.3.5 Pipette, free-running, of capacity 10 ml, calibrated.

B.3.6 Water bath, capable of being maintained at 22 °C \pm 1 °C.

B.4 Preparation of test sample

Take approximately 50 g of dried peach and pass it through the fruit chopper (B.3.2) three times, mixing thoroughly after each grinding.

B.5 Procedure

B.5.1 Test portion and preparation of test solution

Weigh, to the nearest 0,02 g, about 10 g of the test sample (B.4) and transfer it to a blender (B.3.4). Add 290 ml of water. Cover and blend for 2 min. Withdraw a 10 ml aliquot from the bottom of the blender with the pipette (B.3.5) and transfer it to a 100 ml one-mark volumetric flask (B.3.3) containing 2 ml of sodium hydroxide solution (B.2.2). Swirl and mix for 15 s to 30 s. Add 2 ml of sulfuric acid (B.2.1) and

20 ml of sodium tetrachloromercurate(II) solution

(B.2.4). Dilute to the mark with water. ISOMix03:1995 thoroughly by inverting the stoppered flask several disk several rds/sist by absorbance of the test solution at a times. b4eea08bb34a/iso-7709-995 nm against the blank (B.5.2).

B.5.2 Blank test

Carry out a blank test in parallel with the determination, by the same procedure, using the same quantities of all reagents as in the determination, but replacing the aliquot (B.5.1) with 10 ml of water.

B.5.3 Calibration

B.5.3.1 Preparation of calibration solutions

Add 5 ml of sodium tetrachloromercurate(II) solution (B.2.4) to each of a series of six 100 ml one-mark volumetric flasks (B.3.3). Then add, respectively, 0 ml (zero control), 1,0 ml, 2,0 ml, 3,0 ml, 4,0 ml or 5,0 ml of sulfur dioxide standard solution (B.2.6). Dilute to the mark with water and mix.

B.5.3.2 Colour development

Transfer 5,0 ml volumes of the calibration solutions (B.5.3.1) to 200 ml test tubes containing 5 ml of

p-rosaniline hydrochloride solution (B.2.5). Add 10 ml of formaldehyde solution (B.2.3), mix and leave for 30 min at 22 $^{\circ}$ C.

B.5.3.3 Spectrometric measurements

Measure the absorbance of each calibration solution at a wavelength of 550 nm against the zero control solution.

B.5.3.4 Plotting the calibration graph

Plot a graph of absorbance against mass of sulfur dioxide.

B.5.4 Determination

NOTE 2 If it is required to check whether the repeatability requirement is met, carry out two single determinations in accordance with B.5.4.1 and B.5.4.2 under repeatability conditions.

B.5.4.1 Colour development

Proceed in accordance with B.5.3.2, but use 2,0 ml of the test solution (B.5.1) instead of the calibration solutions.

B.5.4.2 Spectrometric measurements

NOTE 3 If the same spectrometer cell is used for successive samples, it should be cleaned between runs with hydrochloric acid (concentrated acid diluted 1:1 with water).

B.6 Calculation

Convert the absorbance measurements (B.5.4.2) to mass of sulfur dioxide by means of the calibration graph (B.5.3.4). Convert the results to milligrams per kilogram of sample.

B.7 Repeatability

The absolute difference between two independent single test results, obtained using the same method on identical test material in the same laboratory by the same operator using the same equipment within a short interval of time, should not be greater than 5 % of the arithmetic mean of the two results.

B.8 Test report

The test report shall specify