INTERNATIONAL STANDARD

ISO 7787-2

Second edition 1992-11-15

Dental rotary instruments — Cutters —

Part 2:

Carbide laboratory cutters

iTeh STANDARD PREVIEW

Instruments rotatifs dentaires - Fraises techniques - Partie 2: Fraises techniques en carbure

ISO 7787-2:1992

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 7787-2 was prepared by Technical Committee ISO/TC 106, Dentistry, Sub-Committee SC 4, Dental instruments.

This second edition cancels and replaces the first edition (ISO 7787-2:1984), of which it constitutes a technical revision. In particular, the 80af-49af-b746-cutters specified in 5.3.1, 5.5.1, 5.8.1 and 5.12 are new!7/so-7787-2-1992

ISO 7787 consists of the following parts, under the general title *Dental rotary instruments — Cutters*:

- Part 1: Steel laboratory cutters
- Part 2: Carbide laboratory cutters
- Part 3: Carbide laboratory cutters for milling machines

© ISO 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case Postale 56 ● CH-1211 Genève 20 ● Switzerland

Printed in Switzerland

Dental rotary instruments — Cutters —

Part 2:

Carbide laboratory cutters

Scope

This part of ISO 7787 specifies the dimensional and other requirements for the 15 most commonly used carbide cutters¹⁾ which are predominantly used in the dental laboratory.

Other characteristics of cutters, for example spiralled blades, cross-cut, are not covered by this part of ISO 7787. These will be dealt with in a future International Standard.

Attention is drawn to ISO 6360 which specifies a 15 digit number for the identification of dental rotary instruments of all types.

Normative references, standards.iteh.ai/catalog/standards/sist/e40a5296-80af-49af-b746-

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 7787. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 7787 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 1797-1:1992, Dental rotary instruments — Shanks — Part 1: Shanks made of metals.

ISO 2157:1992, Dental rotary instruments — Nominal diameters and designation code number.

ISO 2859-1:1989, Sampling procedures for inspection by attributes — Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot inspection.

ISO 6360-1:1985, Dental rotary instruments — Number coding system — Part 1: General characteristics.

ISO 6360-2:1986, Dental rotary instruments — Number coding system — Part 2: Shape and specific characteristics.

ISO 8325:1985, Dental rotary instruments — Test methods.

¹⁾ Sometimes called laboratory burs.

3 Symbols

The following symbols are used in this part of ISO 7787.

- d_1 diameter of the working part, head diameter
- d_2 neck diameter
- l_1 length of the working part, head length
- l_2 length of shank

4 Material

The shaft shall be made of steel or other suitable material.

The working part shall be made of tungsten carbide.

The selection of the type of material and the treatment given to it shall be left to the discretion of the manufacturer.

5 Dimensions and number of blades

All dimensions are in millimetres.

The dimensions, determined as described in ISO 8325, shall be as specified in tables and figures for each type, with the nominal size as specified in ISO 2157.

The shank shall be type 2 of ISO 1797-1. ANDARD PRE

(standards.iteh.ai)

5.1 Round head (spherical)

A round head cutter shall be as specified in figure 1 and table 1.

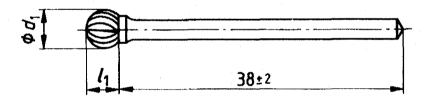


Figure 1

Table 1 — Dimensions and number of blades

Nominal		d_1		<i>I</i> ₁	Number of blades
size		tol.		tol.	min.
031	3,1	± 0,2	2,6	± 0,2	12
040	4	± 0,3	3,3	± 0,25	14
050	5	± 0,3	4,5	± 0,25	16
060	6	± 0,3	5,1	± 0,3	17

5.2 Cylindrical domed (hemispherico-cylindrical)

A cylindrical domed cutter shall be as specified in figure 2 and table 2.

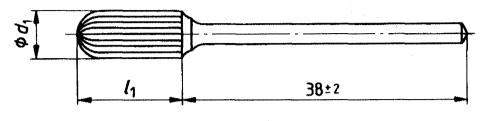


Figure 2

Table 2 — Dimensions and number of blades

Name to the state of	d_1	I ₁	Number of blades	
Nominal size	± 0,3	± 0,5	min.	
060	6	13	17	
070	7	13	17	
i Teh STANDARD PREVIEW				

(standards.iteh.ai)

5.3 Egg (longitudinal ellipsoid)

ISO 7787-2:1992

https://standards.iteh.ai/catalog/standards/sist/e40a5296-80af-49af-b746-

5.3.1 Egg (longitudinal ellipsoid), slender368eddbd7/iso-7787-2-1992

A slender egg cutter shall be as specified in figure 3 and table 3.

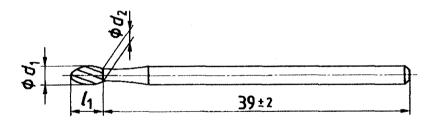


Figure 3

Table 3 — Dimensions and number of blades

Nominal	d_1	I ₁	d_2	Number of blades
size ±	± 0,1	± 0,5	max.	min.
023	2,3	4	1,7	10

5.3.2 Egg (longitudinal ellipsoid), regular

A regular egg cutter shall be as specified in figure 4 and table 4.

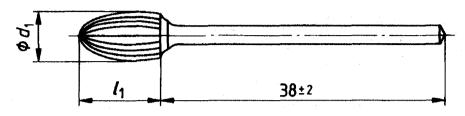


Figure 4

Table 4 — Dimensions and number of blades

Maminalaisa	d_1	<i>L</i> ₁	Number of blades
Nominal size	± 0,3	± 0,5	min.
060	6	10	17

iTeh STANDARD PREVIEW

5.4 Bud rounded (hemispherical/truncated conical)

A bud rounded cutter shall be as specified in figure 5 and table 5.

ISO 7787-2:1992

https://standards.iteh.ai/catalog/standards/sist/e40a5296-80af-49af-b746-18e368ed bd7/iso-7787-2-1992

38 ±2

 $\alpha = 14^{\circ} \text{ to } 18^{\circ}$

Figure 5

Table 5 — Dimensions and number of blades

Naminal also	d_1	<i>I</i> ₁	Number of blades
Nominal size	± 0,3	± 0,5	min.
040	4	8	14
050	5	10	14
060	6	11	17
070	7	13	17

5.5 Pear (hemispherical/inverted conical

5.5.1 Pear (hemispherical/inverted conical), small

A small pear cutter shall be as specified in figure 6 and table 6.

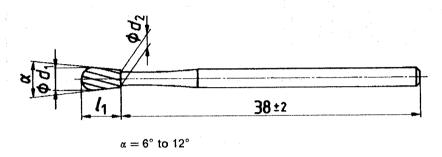


Figure 6

Table 6 — Dimensions and number of blades

Nominal	
Teize ST <u>+0</u> , N <u>P</u> 0,5 Rmax. PRI	EminEW
o23 (standards.iteh.a	i) 12
029 2,9 5 2	12

5.5.2 Pear (hemispherical/inverted conical), regular

A regular pear cutter shall be as specified in figure 7 and table 7.

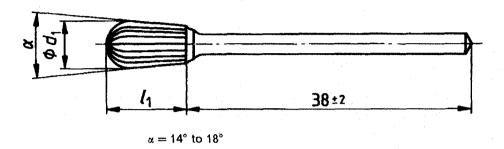


Figure 7

Table 7 — Dimensions and number of blades

Nominal size	d_1	<i>l</i> ₁	Number of blades
Nominal size	± 0,3	± 0,5	min.
iT050 ST 060 070 (S	ANE tanda	AIRD 11 17025.i	PREVIEW teh.ai ₁)

ISO 7787-2:1992

https://standards.iteh.ai/catalog/standards/sist/e40a5296-80af-49af-b746- **5.6 Bud slender (ogivo/ellipsoid, long)**_{8e368eddbd7/iso-7787-2-1992}

A bud slender cutter shall be as specified in figure 8 and table 8.

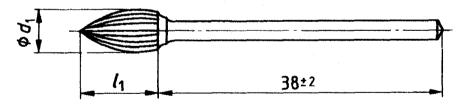


Figure 8

Table 8 — Dimensions and number of blades

Nominal size	d_1	<i>l</i> ₁	Number of blades
	± 0,3	± 0,5	min.
050	5	10	17
060	6	12	17

5.7 Cylinder (cylindrical)

A cylinder cutter shall be as specified in figure 9 and table 9.

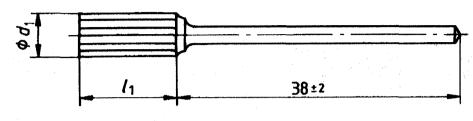


Figure 9

Table 9 — Dimensions and number of blades

Nominal size	d_1	<i>I</i> ₁	Number of blades
Nominai size	± 0,3	± 0,5	min.
060	6	13	20

5.8 Rounded cone (truncated conical, domed)

5.8.1 Rounded cone (truncated conical, domed), small

A small rounded cone cutter shall be as specified in figure 10 and table 10.

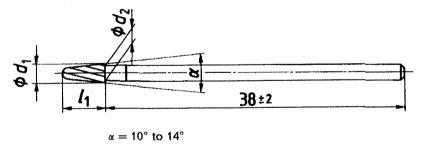


Figure 10

Table 10 — Dimensions and number of blades

Nominal	d_1	l ₁	d_2	Number of blades
size	± 0,1	± 0,5	max.	min.
023	2,3	5,5	2	12
023	2,5	8		