International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEX CHAPOCHAR OPPAHUSALUAR DO CTAHDAPTUSALUNOORGANISATION INTERNATIONALE DE NORMALISATION

Water quality — Determination of electrical conductivity

Qualité de l'eau – Détermination de la conductivité électrique

First edition - 1985-05-15

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 7888:1985</u> https://standards.iteh.ai/catalog/standards/sist/ee68b1e3-f2e7-4f4d-8c36f57456d28550/iso-7888-1985

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 7888 was prepared by Technical Committee ISO/TC 147, Water quality.

<u>ISO 7888:1985</u> https://standards.iteh.ai/catalog/standards/sist/ee68b1e3-f2e7-4f4d-8c36f57456d28550/iso-7888-1985

© International Organization for Standardization, 1985 •

Water quality — Determination of electrical conductivity

1 Scope and field of application

This International Standard specifies a method for the measurement of the electrical conductivity of all types of water.

Electrical conductivity can be used to monitor the quality of

- a) surface waters;
- process waters in water supply and treatment plants; b)
- c)waste waters.

The completeness of analysis for jonic constituents 1 to 3) can R In some cases absolute values are important, in other cases $\gamma_{25} = \frac{1}{\gamma_{25}} \left(\frac{\gamma_{\theta} - \gamma_{25}}{\theta - 25}\right) \times 100$ be checked using this method.

only relative changes are of concern.

ISO 7888:1985 where 25 and θ °C are the temperatures at which the electrical For interferences, see clause gps://standards.iteh.ai/catalog/standards/sisconductivities 925 and \$6 respectively were measured. f57456d28550/iso-7888-1985

Definitions 2

2.1 specific conductance; electrical conductivity, γ : The reciprocal of the resistance, measured under specified conditions, between the opposite faces of a unit cube of defined dimensions of an aqueous solution. For water quality examination, this is often expressed as "electrical conductivity" and may be used as a measure of the concentration of ionizable solutes present in the sample.

(Definition taken from ISO 6107/2.)

It is expressed in siemens per metre.¹⁾

NOTE – The symbols σ and κ are also used for electrical conductivity (see ISO 31/5).

2.2 cell constant, K: Quantity, in reciprocal metres, given by the equation

$$K=\frac{l}{A}$$

2.4 temperature correction factors, f: Factors used to

tivity. In order to make comparisons, it is essential that measurements are corrected to a chosen reference temperature, usually

25,0 °C, even if the temperature of the water sample differs

correct for the temperature dependence of electrical conduc-

Conversions to the electrical conductivity at 25 °C, γ_{25} , can be made using the equation

$$\gamma_{25} = \frac{\gamma_{\theta}}{1 + (\alpha/100)(\theta - 25)}$$

only slightly from that temperature.

where

 α is the temperature coefficient of electrical conductivity;

 γ_{θ} is the electrical conductivity at the measured temperature, θ ;

 θ is the measuring temperature, in degrees Celsius, of the sample.

The temperature coefficient of electrical conductivity can be expressed in reciprocal kelvin or % per °C. 2)

where

l is the length, in metres, of an electrical conductor;

A is the effective cross-sectional area, in square metres, of an electrical conductor.

The cell constant results from the geometry of the cell; it can be empirically determined.

2.3 temperature coefficient of electrical conductivity, ²⁾ α : The temperature coefficient of conductivity $\alpha_{\theta, 25}$, [4, 5]is given by the equation

¹⁾ $1 \text{ S/m} = 10^4 \,\mu\text{S/cm} = 10^3 \,\text{mS/m}$

3 Principle

Direct determination, using an appropriate instrument, of the electrical conductivity of aqueous solutions. The electrical conductivity is a measure of the current conducted by ions present in the water ("phenomenon of conductors of the second kind"), and depends on

- a) the concentration of the ions;
- b) the nature of the ions;
- c) the temperature of the solution;
- d) the viscosity of the solution.

Pure water as a result of its own dissociation has an electrical conductivity at 25 °C of 5,483 μ S/m^[6] (0,005 483 mS/m).

4 Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade.

4.1 Water for preparing solutions and dilutions. Double distilled or de-ionized water; the electrical conductivity shall be $y_{25} < 0.1 \text{ mS/m}$.

4.2 Potassium chloride standard solution A, [7] ISO 7888 a)8 instrument equipped with a flow- or dip-type conducc(KCI) = 0,1 mol/l. https://standards.iteh.ai/catalog/standardtivity/cell%fitted-with-twol or dip-type conduc-

Dry a few grams of potassium chloride at 105 $^{\circ}$ C for 2 h, and dissolve 7,456 g in water (4.1). Dilute to 1 000 ml.

The conductivity of this solution at 25 °C, γ_{25} , is 1 290 mS/m.

4.3 Potassium chloride standard solution B,

c(KCI) = 0.01 mol/l.

Dilute 100 ml of solution A (4.2) with water (4.1) to 1 000 ml.

The conductivity of this solution at 25 °C, γ_{25} , is 141 mS/m.

4.4 Potassium chloride standard solution C,

c(KCI) = 0,001 mol/l.

Dilute 100 ml of solution B (4.3) with water (4.1) to 1 000 ml. Immediately before preparing this solution the water shall be freed from carbon dioxide by purging with pure nitrogen or by boiling. During work with these solutions any contact with the atmosphere shall be minimized.

Prepare this solution shortly before use.

The conductivity of this solution at 25 °C, γ_{25} , is 14,7 mS/m.

 $NOTE-Table 1 gives alternative concentrations of potassium chloride that can be used as standards of conductivity. \ensuremath{^{[8, 9]}}$

Table 1 – Electrical conductivity of potassium chloride solutions

Concentration of potassium chloride, c(KCl)	Electrical conductivity at 25 °C, γ ₂₅		
mol/l	mS/m		
0,000 5	7,4		
0,001	14,7		
0,005	72		
0,01	141		
0,02	277		
0,05	670		
0,1	1 290		
0,2	2 480		

4.5 Platinizing solution.

Dissolve 1,5 g of hydrogen hexachloroplatinate(IV) hexahydrate ($H_2PtCl_6\cdot 6H_2O$) in 50 ml of water containing 0,012 5 g of lead(II) acetate [$Pb(C_2H_3O_2)_2$].

5 Apparatus

1 mS/m. **Ins/m. Ins/m. Ins/m.**

f57456d28550/iso-7888-1985

b) instrument fitted with electrodes of the induction type.

Preferably instruments should be capable of discrete and continuous measurement both in the laboratory and in the field.

A flow-type conductivity cell from which air is excluded is essential for measurements of conductivities of less than 1 mS/m.

The recommended electrode cell constant can be chosen from table 2 for each measuring range.

Table 2 – Recommended cell constants for different ranges of electrical conductivity

Measuring range	Recommended cell constant		
mS/m	m ⁻¹		
$\gamma < 2$	1		
$0,1 < \gamma < 20$	10		
$1 < \gamma < 200$	100		
$10 < \gamma < 2 \times 10^3$	1 000		
$100 < \gamma < 20 \times 10^3$	5 000		

Some instruments are equipped with a cell constant control. If this is not the case, the reading must be multiplied by the cell constant.

5.2 Electrodes.

Whenever platinum electrodes are used for precision measurements the electrodes shall be platinized (see the note).

Unplatinized electrodes may be used only for field and routine laboratory testing.

NOTE – If platinization is necessary, the manufacturer's instructions should be followed, or proceed as follows.

Platinize the electrodes of the cell with platinizing solution (4.5). A suitable plating apparatus consists of a 6 V d.c. supply, a variable resistor, a milliammeter, and an electrode. The procedure for platinizing is not critical. Good platinized coatings are obtained using from 1,5 to 3 C/cm² of electrode area. For example for an electrode having a total area (both sides) of 10 cm², the plating time at a current of 20 mA would be from 12,5 to 25 min. The current density may be from 1 to 4 mA/cm² of electrode area. Plate the electrodes one at a time with the aid of an extra electrode. During the plating, agitate the solution gently. When not in use, fill the cells with water to prevent the drying out of the electrodes while in storage.

5.3 Thermometer, accurate to $\pm 0,1$ °C, within the temperature range of measurement, shall be used for precise determinations. For routine measurements, a thermometer accurate to $\pm 0,5$ °C is satisfactory ch STANDA

5.4 Thermostatic bath, capable of being maintained at $(5, 25, 0 \pm 0, 1 \text{ °C})$. For routine measurements, a tolerance of $\pm 0,5 \text{ °C}$ is satisfactory.

https://standards.iteh.ai/catalog/standards/standards/ nles f57456d28550/iso-7888-19

6 Sampling and samples

Collect the laboratory sample in a polyethylene bottle completely filled and tightly stoppered. Soda glass bottles shall not be used. Measurement of conductivity should be performed as soon as practicable, particularly when there is a possibility of an exchange of gases such as carbon dioxide or ammonia with the atmosphere, or a possibility of biological activity. Biological activity can be reduced by storing the samples in the dark at 4 °C; however, samples shall be brought to equilibrium at the reference temperature of 25 °C before the conductivity is measured. No suitable preservative is known for samples taken for conductivity measurements.

7 Procedure

7.1 General

Prepare the equipment for use as instructed by the manufacturer and ensure that an electrode cell of known cell constant appropriate to the desired measuring range is fitted (see table 2). The test portion depends on the equipment used.

If the cell constant is not accurately known, determine the constant as given in clause 5 using the potassium chloride standard solutions (4.2 to 4.4) appropriate to each desired measuring range. Check the cell constant at least once every 6 months.

Many instruments incorporate cell constant correction as an integral function and thus a direct reading of electrical conductivity is obtained. Otherwise multiply the conductance value obtained by the cell constant to obtain electrical conductivity.

For high precision work, carry out the measurement of electrical conductivity when the sample and apparatus in direct contact with it has attained equilibrium at 25,0 \pm 0,1 °C. Thus all sources of error that may arise from the use of temperature compensators, or from mathematical correction techniques, are eliminated.

7.2 Temperature correction

If measurement at 25,0 \pm 0,1 °C is not possible, for example in field or plant work, measure the electrical conductivity of the sample at a known temperature, θ °C. Many instruments are fitted with temperature compensation devices, and with reference to the temperature coefficient of samples, may automatically correct measurements obtained over a range of temperatures to electrical conductivity at 25,0 °C. Such instruments shall be calibrated strictly in accordance with the manufacturer's instructions.

If the temperature coefficient of the sample is not known, it may be derived by substituting electrical conductivity values experimentally determined at 25,0 \pm 0,1 °C and temperatures $\theta \pm$ 0,1 °C (see 2.3).

Where instruments do not incorporate a temperature compensation device, the electrical conductivity measured at θ °C shall be corrected to 25,0 °C using the appropriate correction factor taken from table 3.

Whichever form of temperature compensation is applied to the measurement of electrical conductivity at θ °C, the result will be less accurate than that actually measured at the reference temperature of 25,0 °C.

In some aspects of routine field work, it may not be necessary to transpose values measured at θ °C to 25,0 °C. However, such measurements should be interpreted with great care and comparison with other values may be difficult or even meaningless.

θ					f	25				
°C	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
0	1,918	1,912	1,906	1,899	1,893	1,887	1,881	1,875	1,869	1 863
1	1,857	1,851	1,845	1,840	1,834	1,829	1,822	1,817	1,811	1 805
2	1,800	1,794	1,788	1,783	1,777	1,772	1,766	1,761	1.756	1 750
3	1,745	1,740	1,734	1,729	1,724	1,719	1,713	1,708	1.703	1 698
4	1,693	1,688	1,683	1,678	1,673	1,668	1,663	1,658	1.653	1 648
5	1,643	1,638	1,634	1,629	1,624	1,619	1,615	1,610	1.605	1 601
6	1,596	1,591	1,587	1,582	1,578	1,573	1,569	1,564	1.560	1 555
7	1,551	1,547	1,542	1,538	1,534	1,529	1,525	1,521	1,516	1,500
8	1,508	1,504	1,500	1,496	1,491	1,487	1,483	1,479	1.475	1 471
9	1,467	1,463	1,459	1,455	1,451	1,447	1,443	1,439	1,436	1 432
10	1,428	1,424	1,420	1,416	1,413	1,409	1,405	1,401	1.398	1,394
11	1,390	1,387	1,383	1,379	1,376	1,372	1,369	1.365	1 362	1 358
12	1,354	1,351	1,347	1,344	1,341	1,337	1,334	1,330	1.327	1,323
13	1,320	1,317	1,313	1,310	1,307	1,303	1,300	1.297	1,294	1 290
14	1,287	1,284	1,281	1,278	1,274	1,271	1,268	1,265	1.262	1 259
15	1,256	1,253	1,249	1,246	1,243	1,240	1,237	1,234	1.231	1 228
16	1,225	1,222	1,219	1,216	1,214	1,211	1,208	1,205	1 202	1 199
17	1,196	1,193	1,191	1,188	1,185	1,182	1,179	1,177	1,174	1 171
18	1,168	1,166	1,163	1,160	1,157	1,155	1,152	1,149	1 147	1 144
19	1,141	1,139	1,136	1,134	1,131	1,128	1,126	1,123	1,121	1,118
20	1,116	1,113	1,111	1,108	1,105	1,103	1,101	1.098	1.096	1 093
21	1,091	1,088	1,086	1,083	1,081	1,079	1,076	1,074	1.071	1.069
22	1,067	1,064	1,062	1,060	1,057	1,055	1,053	1.051	1.048	1 046
23	1,044	1,041	1,039	1,037	1,035	1,032	1,030	1,028	1.026	1.024
24	1,021	1,019 🗨	1,017 🛆	1,015 🗛	1,013	R 1,011	1,008	1,006	1,004	1.002
25	1,000	0,998	0,996	0,994	0,992	0,990	0,987	0,985	0.983	0.981
26	0,979	0,977	0,975	0,973	0,971	0,969	0,967	0,965	0,963	0.961
27	0,959	0,957	0,955	0,953	0,952	0,950	0,948	0.946	0.944	0.942
28	0,940	0,938	0,936	0,934	0,933	0,931	0,929	0,927	0.925	0.923
29	0,921	0,920	0,918	0,916 75	0.914	0,912	0,911	0,909	0.907	0,905
30	0,903	0,902	0,900	0,898	0,896	0,895	0,893	0,891	0.889	0.888
31	0,886	http;884tanc	lard6,883.a1/	cataloggistanc	$ard_{0,855}/eec$	0,877 ² e/	-4140-8636- 0,876	0.874	0.872	0.871
32	0,869	0,867	0,866 🎁	7456,864550)/isc0,78638-1	9850,861	0,859	0.858	0.856	0.854
33	0,853	0,851	0,850	0,848	0,846	0,845	0,843	0,842	0.840	0.839
34	0,837	0,835	0,834	0,832	0,831	0,829	0,828	0,826	0.825	0.823
35	0,822	0,820	0,819	0,817	0,816	0,814	0,813	0,811	0,810	0,808

Table 3 — Temperature correction factor, f_{25} , for the conversion of conductivity values of natural waters from θ °C to 25 °C^[5]

NOTES TO TABLE 3

1 The values of the temperature correction factors given are the mean values of measurements of a number of natural waters. Note that they are only applicable for measurements of those waters having a γ_{25} of about 6 to 100 mS/m and a composition comparable to natural ground, well, or surface waters.

	Cations	Anions		
Predominant	Ca ²⁺	HCO ₃		
Minor	Mg ²⁺	SO ₄ ²⁻ , CI-, NO ₃ ⁻		

2 Note especially that they are not applicable to potassium chloride solutions used for the calibration of conductivity cells. Therefore the calibration must always be carried out at the reference temperature 25,0 \pm 0,1 °C.

3 The temperature correction factors, $f_{\rm 25},$ are calculated by the equations

$$f_{25} = \left[(1 - a) + a \left(\frac{\eta_{\theta}}{\eta_{25}} \right)^n \right] \times 1,116$$

and
$$\frac{\eta_{\theta}}{\eta_{25}} = A + \exp\left(B + \frac{C}{\theta + D} \right)$$

where

 η is the viscosity of the solution;

 $\boldsymbol{\theta}_{-}$ is the temperature of the solution at which measurements were made.

Values of the constants

<i>a</i> =	0,962 144
n =	0,965 078
4 =	-0,198 058
B =	- 1,992 186
C =	231,176 28
D =	86,391 23

4 In the past electrical conductivity was often quoted as γ_{20} . If the water composition is comparable to that in note 1, it is possible to convert all such values to the present reference temperature of 25 °C using the temperature correction factor of 1,116 given in table 3.

8 Expression of results

8.1 Calculation

The result is read directly from the instrument and shall be expressed with reference to this International Standard as γ_{25} , in millisiemens per metre, or other units (see 2.1), i.e. as electrical conductivity at 25 °C and with reference to the calibration of the apparatus with potassium chloride standard solutions. For measurements not carried out directly at the temperature 25,0 \pm 0,1 °C the method of correction to 25,0 °C (see 7.2) shall be noted in addition to the actual measuring temperature (for examples see 8.4).

8.2 Repeatability

Repeatability depends on the instrument used and can best be obtained from the manufacturer.

8.3 Standard deviation¹⁾

See tables 4 and 5.

Table 4 – Standard deviation of synthetic samples (KCI solutions) * STANDAR Douling of the electrodes.

Values in millisiemens per metre					
Mean conductivity	Within batch (Repeatability standard deviation)	Between batch	Total ISO 78	US•l ati tai <u>88:1989</u> landa/aist/	
6,67	0,067	0,087	0,110	141U5/5104	
12,67	0,081	0,075	574301105550	//ISO-/ @@@	
25,74	0,175	0,039	0,179		
50,09	0,163	0,068	0,176		

* For the within batch measurements there were 10 degrees of freedom and for the between batch measurements there were 9 degrees of freedom.

Table 5 - Standard deviation of natural waters **

Values in millisiemens per metre

Mean conductivity	Within batch (Repeatability standard deviation)	Between batch	Total
10,08	0,079	0,250	0,262
24,78	0,150	0,258	0,298
25,11	0,098	0,308	0,323
42,23	0,223	0,277	0,355

** For the within batch measurements there were 30 degrees of freedom and for the between batch measurements there were 9 degrees of freedom.

8.4 Examples of reported results

8.4.1 Example 1

 $\gamma_{25} = 2,52 \text{ mS/m}$ (according to ISO 7888) Measuring temperature 25,0 °C

8.4.2 Example 2

 $\gamma_{25} = 25.8$ mS/m (according to ISO 7888) Measuring temperature 11,5 °C Mathematical correction

8.4.3 Example 3

 $\gamma_{25} = 48 \text{ mS/m}$ (according to ISO 7888) Measuring temperature 12,1 °C Correction by means of a temperature compensation device

9 Interferences

The measured values of the electrical conductivity can be affected by contamination of the sample within the cell. The presence of gross suspended matter, grease or oil can cause fouling of the electrodes.

Interferences caused by such effects are not, in routine operation, easily recognized. They may cause a change in cell constant, but this can only be ascertained by checking with the appropriate potassium chloride standard solution (4.2 to 4.4).

Solution of the same of the

Measurements of waters with electrical conductivities less than 1 mS/m are influenced by atmospheric carbon dioxide and ammonia. In these cases measurement shall be carried out in flow-type equipment.

When dealing with water of very low ion content the contribution of the electrical conductivity of highly pure water may be significant.

10 Test report

The test report shall contain the following information:

- a) reference to this International Standard;
- b) precise identification of the sample;
- c) the results as indicated in clause 8;

d) any deviation from the procedure specified or any circumstances that may have affected the results.

1) Measurements carried out by the South West Water Authority, UK, using a commercial instrument and a dip-type cell.

Bibliography

- 11 ROSSUM, J.R. Checking the accuracy of water analyses through the use of conductivity. *J. Am. Water Works Assoc.* **67** 1975: 204-205.
- [2] LAXEN, D.P.H. A specific conductance method for quality control in water analyses. In: *Water Research*, Vol. 11, 1977, pp. 91-94.
- [3] *Correctness of Analyses. Standard Methods for the Examination of Water and Waste Water.* APHA-AWWA-WPCF. **15** 1980: 31.
- [4] WAGNER, R. Über die Temperaturabhängigkeit der elektrischen Leitfähigkeit von Wässern. Vom Wasser 38 1971: 27-48.
- [5] WAGNER, R. Temperaturkorrekturfaktoren für die elektrische Leitfähigkeit von Wässern. Z. Wasser- Abwasserforsch. (2) 1980.
- [6] OTTEN, G. Measuring water purity by specific resistance. Int. Lab. 1972: 31-35.
- [7] ROBINSON, R.A., and STOKES, R.W. *Electrolyte Solutions*. New York, Academic Press, 1969.
- [8] ROMMEL, K., and SEELOS, E. Leitfähigkeitsmessungen, Automatische Temperatur-Kompensation unter Berücksichtigung der «natürlichen Wässer». *Wasser Luft Betrieb* (9) 1980: 14-17.
- [9] BARTHEL, FEUERLEIN, NEUEDER and WACHTER. Calibration of conductance cells at various temperatures. *J. Solution Chem.* **9** 1980: 209.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 7888:1985</u> https://standards.iteh.ai/catalog/standards/sist/ee68b1e3-f2e7-4f4d-8c36f57456d28550/iso-7888-1985