

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Railway applications – Power supply and rolling stock – Technical criteria for the coordination between power supply (substation) and rolling stock
(standards.iteh.ai)

Applications ferroviaires – Alimentation électrique et matériel roulant – Critères techniques pour la coordination entre le système d'alimentation (sous-station) et le matériel roulant
<https://standards.iteh.ai/catalog/standards/list/51005/iec-62313-2009-045cfacf3c0/iec-62313-2009>

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2009 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.

Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

■ Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

■ IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

■ Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

■ Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

A propos de la CEI

La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI

Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

■ Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d'effectuer des recherches en utilisant différents critères (numéro de référence, texte, comité d'études,...). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.

■ Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles publications parues. Disponible en-ligne et aussi par email.

■ Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International en ligne.

■ Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du Service clients ou contactez-nous:

Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Railway applications – Power supply and rolling stock – Technical criteria for the coordination between power supply (substation) and rolling stock
standards.iec.ch

Applications ferroviaires – Alimentation électrique et matériel roulant – Critères techniques pour la coordination entre le système d'alimentation (sous-station) et le matériel roulant
standards.iec.ch

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE

PRICE CODE
CODE PRIX

X

ICS 45.060

ISBN 978-2-88910-667-7

CONTENTS

FOREWORD	5
1 Scope	7
2 Normative references	7
3 Terms and definitions	8
4 Periods over which parameters can be averaged or integrated	11
5 Different source sections	11
5.1 AC phase separation sections	11
5.2 System separation sections	12
5.3 Acceptance criteria	13
6 Power factor of a train	13
6.1 General	13
6.2 Inductive power factor	13
6.3 Capacitive power factor	14
7 Train current limitation	14
7.1 Maximum train current	14
7.2 Automatic regulation	15
7.3 Power or current limitation device	15
8 Quality index of the power supply	16
8.1 General	16
8.2 Description	16
8.3 Values for $U_{\text{mean useful}}$ at the pantograph	17
8.4 Relation between $U_{\text{mean useful}}$ and $U_{\text{min/ist}}$	17
8.5 Acceptance criteria	17
9 Type of line and electrification system	17
10 Harmonics and dynamic effects	17
10.1 General	17
10.2 Acceptance procedure for new elements	19
10.3 Compatibility study	19
10.4 Methodology and acceptance criteria	23
11 Coordination of protection	23
11.1 General	23
11.2 Protection toward short-circuits	23
11.3 Coordination of the circuit breakers on loss of line voltage and re-energisation	24
11.4 D.C. electrification systems: transient current during closure	24
11.5 Acceptance criteria	24
12 Regenerative braking	25
12.1 General conditions on the use of regenerative braking	25
12.1.1 Traction unit conditions	25
12.1.2 Power supply system conditions	25
12.2 Acceptance criteria	25
13 Tests	25
14 Test methodology	26
14.1 Neutral sections	26
14.1.1 Tests for traction unit	26

14.1.2 Tests for infrastructure	26
14.2 Power factor	26
14.3 Train current limitation	27
14.4 Quality index of the power supply	27
14.4.1 U mean useful (zone)	27
14.4.2 U mean useful (train)	27
14.4.3 Relation between U mean useful and $U_{\min 1}$	28
14.5 Harmonics and dynamic effects	28
14.6 Coordination of protections	28
14.6.1 Protection toward short-circuits and action on circuit-breakers	28
14.6.2 Coordination of the circuit breakers on loss of line voltage and re-energisation	28
14.6.3 DC traction units: Transient current during closure	29
14.7 Regenerative braking	29
14.7.1 Traction unit	29
14.7.2 Substation	29
Annex A (informative) Integration periods over which parameters can be averaged	30
Annex B (informative) Selection criteria determining the voltage at the pantograph for high speed trains	31
Annex C (informative) Investigation of harmonic characteristics and related overvoltages	34
Annex D (informative) Data related to the compatibility study of harmonics and dynamic effects	36
Annex E (informative) Types of different source sections	42
Annex F (informative) Maximum allowable train current	44
Annex G (informative) Maximum contact line – rail short-circuit level as European practise	45
Annex H (informative) di/dt when closure of traction unit circuit breaker	46
Annex I (informative) Special national conditions	47
Bibliography	48
 Figure 1 – Maximum train current against voltage	15
Figure 2 – Procedure for compatibility study of harmonics and dynamic effects	20
Figure E.1 – Insulator section	42
Figure E.2 – Neutral section with insulators	42
Figure E.3 – Neutral section with insulated overlaps	42
Figure E.4 – Split neutral section with an insulator and insulated overlaps	42
Figure E.5 – Split neutral section with three insulated overlaps	43
Figure E.6 – Changeover section	43
Figure E.7 – Example of system separation section from AC to DC	43
Figure E.8 – Example of system separation section from DC to AC	43
 Table 1 – Total inductive power factor λ of a train	14
Table 2 – Value of factor a (informative)	15
Table 3 – Minimum U mean useful at pantograph (V)	17
Table 4 – Description of steps	21

Table 5 – Action on circuit-breakers at an internal fault within a traction unit.....	23
Table 6 – Tests.....	26
Table A.1 – Integration period.....	30
Table D.1 – Characterization of a.c. electrified lines	36
Table D.2 – Characterisation of d.c. electrified lines	38
Table D.3 – Characterisation of one a.c. train with respect to impedances, harmonics and stability	39
Table D.4 – Characterisation of one d.c. train with respect to impedances, harmonics and stability	41
Table F.1 – Maximum allowable train current (A)	44
Table G.1 – Maximum contact line – rail short-circuit level as European practise.....	45
Table H.1 – di/dt when closure of traction unit circuit breaker	46

iTeh STANDARD PREVIEW (standards.iteh.ai)

[IEC 62313:2009](#)

<https://standards.iteh.ai/catalog/standards/sist/3f0d97fe-c70f-4f35-9d86-045cfacfc3c0/iec-62313-2009>

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**RAILWAY APPLICATIONS –
POWER SUPPLY AND ROLLING STOCK –
TECHNICAL CRITERIA FOR THE COORDINATION BETWEEN
POWER SUPPLY (SUBSTATION) AND ROLLING STOCK**

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62313 has been prepared by IEC technical committee 9: Electrical equipment and systems for railways. This standard is based on EN 50388 (2005).

The text of this standard is based on the following documents:

FDIS	Report on voting
9/1225/FDIS	9/1258/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[IEC 62313:2009](#)

<https://standards.iteh.ai/catalog/standards/sist/3f0d97fe-c70f-4f35-9d86-045cfacfc3c0/iec-62313-2009>

**RAILWAY APPLICATIONS –
POWER SUPPLY AND ROLLING STOCK –
TECHNICAL CRITERIA FOR THE COORDINATION BETWEEN
POWER SUPPLY (SUBSTATION) AND ROLLING STOCK**

1 Scope

This International Standard is intended to be used to set up the requirements for the acceptance of rolling stock on infrastructure in the field of:

- co-ordination of protection principles between power supply and traction units, especially fault discrimination for short-circuits;
- co-ordination of installed power on the line and power demand of the trains;
- co-ordination of traction unit regenerative braking and power supply receptivity;
- co-ordination of harmonic behaviour.

This standard deals with the definition and quality requirements of the power supply at the interface between traction unit and fixed installations.

The standard specifies the interface between rolling stock and electrical fixed installations for traction, in the frame "supply system". The interaction between pantograph and overhead line and the interaction with subsystem "control-command" (especially signalling) are not dealt with in the standard.

Requirements are given for the following categories of line: <https://standards.iec.ch/catalog/standards/sis/31009/fe-c70f-4f35-9d86-045cfacf3c0/iec-62313-2009>

- high speed lines,
- conventional lines.

For classical lines, values, if any, are given for the existing European networks. A set of values is also specified for the future network, which is named "target" network.

The following electric traction systems are concerned:

- railways;
- guided mass transport systems that are integrated with the railways;
- material transport systems that are integrated with the railways.

This standard does not apply retrospectively to rolling stock already accepted by infrastructure managers. However, on new infrastructure, existing rolling stock may be accepted by the infrastructure manager, provided there is an agreement.

Information is given to the train operating companies on electrification parameters to enable them to confirm after consultation with the rolling stock manufacturers that there will be no consequential disturbance on the electrification system.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-811, *International Electrotechnical vocabulary (IEV) – Chapter 811: Electric traction*

IEC 60850, *Railway applications – Supply voltages of traction systems*

IEC 61133, *Railway applications – Rolling stock – Testing of rolling stock on completion of construction and before entry into service*

IEC 61992-1, *Railway applications – Fixed installations – D.C. switchgear – Part 1: General*

ISO 3166-1:2006, *Codes for the representation of names of countries and their subdivisions – Part 1: Country codes*

3 Terms and definitions

For the purposes of this international Standard, the following terms and definitions apply.

3.1

high speed line

specially built or upgraded line equipped for speeds generally equal to or greater than 200 km/h

3.2

conventional line

line on which conventional freight and passenger trains run. It is not specially built for high speed as defined in 3.1.

It includes:

[IEC 62313:2009](#)

<https://standards.iteh.ai/catalog/standards/sist/3f0d97fe-c70f-4f35-9d86-04a1200iec200>

- information on European networks named with their national country code (see ISO 3166-1);
- future target network named "target", see 3.25

3.3

type of line

classification of lines as a function of the parameters described in 3.4 to 3.6

3.4

train power at the pantograph

active power of the train taking into account power for traction, regeneration and auxiliary

3.5

minimum possible headway

interval at which trains can run as allowed by the signalling system

3.6

maximum line speed

speed for which the line was approved for operation

3.7

contact line

conductor system for supplying electric energy to vehicles through current-collecting equipment

3.8**overhead contact line**

contact line placed above (or beside) the upper limit of the vehicle gauge and supplying vehicles with electric energy through roof-mounted current collection equipment

[IEV 811-33-02]

3.9**(traction) substation**

installation, the main function of which is to supply a contact line system, at which the voltage of a primary supply system, and in certain cases the frequency, is converted to the voltage and frequency of the contact line

3.10**total power factor λ**

$$\lambda = \frac{\text{active power}}{\text{apparent power}}$$

3.11**deformation factor ν**

$$\nu = \frac{\lambda}{\cos \varphi}$$

3.12**iTeh STANDARD PREVIEW****power factor of the fundamental wave**

$$\cos \varphi = \frac{\text{active power of the fundamental wave}}{\text{apparent power of the fundamental wave}}$$

[IEC 62313:2009](#)

NOTE This is also the displacement factor $\cos \varphi$.
<https://standards.iteh.ai/catalog/standards/sist/3f0d97fe-c70f-4f35-9d86-045cfacfc3c0/iec-62313-2009>

3.13**different source section**

a section of a contact line to prevent successive electrical sections, differing in voltage, phase or frequency being connected together by the passage of current collectors

- **neutral section**

section of a contact line provided with a sectioning point at each end to prevent successive electrical sections, differing in voltage, phase or frequency being connected together by the passage of current collectors

- **[IEV 811-36-16]**

- **insulator section**

section of a contact line to prevent successive electrical sections, differing in voltage, phase or frequency being connected together by the passage of current collectors, formed by an insulator inserted in a continuous run of contact line

- **changeover section**

section of a contact line provided with a section in the middle to enable energization from either power supply source at each end by switching

3.14**vehicle**

general term denoting any single item of rolling stock, e.g. a locomotive, a coach or a wagon

[IEV 811-02-02]

3.15**traction unit**

general term covering a locomotive, motor coach or train unit

[IEV 811-02-04]

3.16**rolling stock**

general term covering all vehicles with or without motors

[IEV 811-02-01]

3.17**train**

any combination of rolling stock coupled together. It includes banking locomotives

3.18**normal operating conditions**

traffic operating to the design timetable and train formation used for power supply fixed installation design.

Power supply equipment is operated according to standard design rules.

NOTE Standard rules may vary depending on the infrastructure manager's policy.

iTeh STANDARD PREVIEW

3.19 abnormal operating conditions

either higher traffic loads or outage of power supply equipment outside the design standard

NOTE Under these conditions, traffic may not operate to the design timetable.

<https://standards.iteh.ai/catalog/standards/sist/3f0d97fe-c70f-4f35-9d86-045cfacfc3c0/iec-62313-2009>

3.20 mean useful voltage at the pantograph

$U_{\text{mean useful}}$

3.20.1 **$U_{\text{mean useful (zone)}}$**

voltage giving an indication of the quality of the power supply in a geographic zone during the peak traffic period in the timetable

3.20.2 **$U_{\text{mean useful (train)}}$**

voltage identifying the dimensioning train and enables the effect on its performance to be quantified

3.21**dimensioning train**

train with the lowest mean useful voltage

3.22**register of infrastructure**

a single document which compiles, for each section of line, the characteristics of the lines concerned for all subsystems that include fixed equipment.

This "register of infrastructure" should be drawn up by the infrastructure manager or its authorised representative.

3.23**infrastructure manager**

any body or undertaking that is responsible in particular for establishing and maintaining railway infrastructure. This may also include the management of infrastructure control and safety systems. The functions of the infrastructure manager on a network or part of a network may be allocated to different bodies or undertakings.

3.24**new element**

generally, any new, rebuilt or modified (hardware or software) traction-unit or power supply component having a possible influence on the harmonic behaviour of the power supply system.

This new element will be integrated in an existing power supply network with traction units, for example for fixed installation side:

- transformer;
- HV cable;
- filters;
- converter

3.25**target network**

network whose design allows the requirements of European interoperability and should avoid later costly investments

iTeh STANDARD PREVIEW

(standards.iteh.ai)

4 Periods over which parameters can be averaged or integrated

[IEC 62313:2009](#)

This clause is informative and refers to Annex A:
<https://standards.iteh.ai/catalog/standards/sist/3f0d97fe-c70f-4f35-9d86-045cfacf3c0/iec-62313-2009>

The train operators or infrastructure managers use parameters for:

- their dimensioning computations;
- protection measures;
- planning;
- etc.

These are effective only if they are averaged over precisely defined time spans.

Annex A gives, for information, the periods over which those parameters should be averaged.

5 Different source sections

There are several types of different source sections, such as the insulator section, the neutral section and the changeover section, as shown in Annex E.

5.1 AC phase separation sections

There are four possibilities for the train to run through phase separation sections:

- a) with traction/regenerative current carried;
- b) with auxiliary load current carried;
- c) with no-load current of the transformer carried;
- d) with no power consumption.

The choice between a) to d) shall be made by the infrastructure manager.

The requirements for the design of the infrastructure and rolling stock are:

a) Traction/regenerative current carried

If the phase separation sections are to be negotiated with traction/regenerative current carried, changeover sections shall be installed in the infrastructure. See Clause E.4 for the information on the changeover section.

Changeover operation of supplied power for the changeover section shall be performed automatically in the infrastructure.

Trains shall allow short interruptions of supply voltage during changeover operations without causing any damages or failures.

b) Auxiliary load current carried

If the phase separation sections are to be negotiated with auxiliary load current carried, sections and pantographs shall be capable of breaking auxiliary load current, and also making and carrying inrush current of transformers.

Traction/regenerative current shall be brought to zero when entering the phase separation section. Automatic operation is preferred; however, manual on board operation is also permitted.

Sections shall have enough length to avoid the two phases bridged by the arc of traction/regenerative current in case traction/regenerative current fails to become zero.

See Clause E.1 for the information on the insulator section.

c) No-load current of transformer carried

If the phase separation sections are to be negotiated with no-load current of transformer carried, sections and pantographs shall be capable of making and carrying inrush current of transformers.

Both traction/regenerative current and auxiliary load current shall be brought to zero when entering the phase separation section. Automatic operation is preferred; however, manual on board operation is also permitted.

Sections shall have enough length to avoid the two phases bridged by the arc of traction/regenerative current in case traction/regenerative current fails to become zero.

See Clause E.1 for the information on the insulator section.

d) No power consumption

If the phase separation sections are to be negotiated with power consumption of the train brought to zero, power consumption shall be brought to zero when entering the phase separation section.

For high-speed lines, this shall be done automatically.

For conventional lines, automatic operation is preferred; however, manual on board operation is also permitted.

Lowering of the pantographs is not necessary.

See Clauses E.2 and E.3 for the information on the suitable sections.

The infrastructure manager shall provide adequate means to allow a train that is gapped underneath the phase separation to be restarted. Such means, however, are not necessarily required for the insulator section.

5.2 System separation sections

The trains shall be able to move from one energy supply system to an adjacent one which uses a different energy supply without bridging the two systems. The necessary actions (opening of the main circuit-breaker, lowering of the pantographs) depend on the type of both supply systems as well as on the arrangement of pantographs on trains and the running speed.

There are two possibilities for the train to run through system separation sections:

- a) with pantograph raised and touching the contact wire;
- b) with pantograph lowered and not touching the contact wire.

The choice between a) and b) shall be made by the infrastructure manager.

The requirements for the design of the infrastructure and rolling stock are:

a) Pantograph raised

If the system separation sections are negotiated with pantographs raised to the contact wire, provisions shall be taken in the infrastructure to avoid bridging of both adjacent power supply systems when the opening of the on-board circuit-breaker(s) fails, e.g. earthing of neutral section.

For High Speed lines, on rolling stock, devices shall open automatically the circuit-breaker before reaching the separation section and recognise automatically the voltage of the new power supply system at the pantograph in order to switch the corresponding circuits.

For conventional lines, these requirements for High Speed lines may be applied.

b) Pantograph lowered

If the system separation sections are negotiated with pantographs lowered the following conditions apply:

The design of separation section between differing energy supply systems shall ensure that, in case of a pantograph unintentionally applied to the contact line, bridging of two power supply systems is avoided and switching off both supply sections is triggered immediately. Triggering of a short-circuit ensures the operation of insulated sections.

- For High Speed lines, at supply system separations which require a lowering of the pantograph, the pantograph shall be lowered without the driver's intervention, triggered by control signals.
- For conventional lines, these requirements for High Speed lines may be applied.

Examples of the section length to avoid bridging by arcs are given in Clause E.4.

5.3 Acceptance criteria

Infrastructure, traction units and control command designers shall comply with the requirements of 5.1 and 5.2.

6 Power factor of a train

6.1 General

The higher the power factor of a train, the better the power supply performance, therefore the rules below apply.

Capacitive or inductive power from a train can be utilised to change the overhead contact line voltage.

6.2 Inductive power factor

This subclause deals only with inductive power factor and power consumption over the range of voltages from $U_{\min 1}$ to $U_{\max 1}$ defined in IEC 60850.

Table 1 gives the total inductive power factor λ of a train. For the calculation of λ , only the fundamental of the voltage at pantograph is taken into account.