Textiles - Twist factor related to the Tex System

0 Introduction

Twist factor is a measure of the spiralling orientation of the fibres in a spun yarn or of the filaments in a filament yarn. It links together the two other characteristics of a yarn, namely the linear density and the twist. Apart from the linear density and twist, yarns or rovings composed of the same fibres and having the same twist factor have the same positioning of the fibres and consequently a certain similarity of structure.

The numerical value of the twist factor is dependent on the yarn linear density system, the chosen unit for expressing linear density in that system and the chosen length across which the twist is measured. The Tex System, with its four recommended units, has been adopted internationally (see ISO 1144). For length, the SI units given in ISO 1000 should be used. Consequently twist factor, which is frequently used in the textile industry, should be adapted to these units.

The equation for calculating α_{t} in clause 4 of this Technical Report is the preferred system and it is hoped that the second equation for calculating α_{m}, will only be used where necessary as an interim measure until the α_{t} equation can be fully implemented. It is felt that full implementation of the α_{t} system internationally would be of considerable benefit to the industry.

Since the meeting of ISO/TC 38/SC 4, Implementation of the Tex System, in Timperley in 1967, the sub-committee have tried to find an acceptable formula for this parameter.

During the technical discussions it was found that fibre density was important when comparing the positioning of fibres in blended yarns. However, for routine purposes, the introduction of fibre density would make the practical use of twist factor somewhat complicated. It was accepted, however, that for scientific use and for the purposes of comparing yarns composed of different natural and synthetic fibres, the inclusion of fibre density was of interest. At that time no agreement could be reached on a formula for including fibre density.

Several enquiries were made amongst member bodies but these did not indicate a preference for any of the proposed formulae. From amongst the many proposals, two possible solutions remained. The first was based on the basic unit tex and resulted in a twist factor whose numerical value was approximately ten times that of a twist factor based on the traditional English cotton count system (N_{ec}). The numerical value obtained using the second formula was equal to that obtained using the metric count system (N_{m}). It was felt that this relationship between the numerical values would be advantageous during the transition period until the Tex System had been fully implemented.

At the eighth meeting of ISO/TC 38 in 1980, it was decided that a Technical Report, Type 2, should be prepared which summarized the current situation.

1 Scope and field of application

This Technical Report gives equations for the calculation of twist factors in SI units and conversion tables with which twist factors expressed in other unit systems can be transformed into SI units. It is applicable to single twisted yarns, folded yarns and cabled yarns.

UDC 677.017.333

[^0]
2 References

ISO 1000, S/ units and recommendations for the use of their multiples and of certain other units.
ISO 1144, Textiles - Universal system for designating linear density (Tex System).

3 Definition

twist factor : A measure of the spiralling orientation of the fibres in a spun yarn or of the filaments in a filament yarn. It is related to the angle which fibres on the surface of the yarn make with the axis of the yarn. Provided they are of the same material, the fibres or filaments in yarns with similar twist factors will be similarly orientated with respect to the yarn axis.

4 Twist factor in the Tex System

The twist factor in the Tex System expresses the spiralling orientation in terms of the twist in the yarn, in turns per metre, and the linear density of the yarn, in a unit of the Tex System.

For calculating the twist factor, one of the following two different equations should be used :

$$
\begin{aligned}
& \alpha_{\mathrm{t}}=\frac{T}{100} \sqrt{\varrho_{l}} \\
& \alpha_{\mathrm{m}}=\frac{T}{100} \sqrt{\varrho_{l}^{\prime}}
\end{aligned}
$$

iTeh STANIDARID PREVIIEW
where
α_{t} (alpha tex) is the twist factor (torsion angle), expressed in the Tex System;
α_{m} (alpha metric) is the twist factor (torsion angle), expressed in the metric system;8-499c-8687-
\boldsymbol{T} is the twist, expressed in turns per metre; 7b9f05e0cf3f/iso-tr-8091-1983
ϱ_{l} is the linear density, in tex;
ϱ_{l}^{\prime} is the linear density, in decitex.

NOTES

1 It is essential that any expression of the value of the twist factor be accompanied by a statement of the equation chosen.
2 The equation for calculating α_{t} is the preferred system. The equation for calculating α_{m} should only be used where necessary as an interim measure until the α_{t} equation can be fully implemented.

5 Relationship between α_{t} and α_{m}

$\alpha_{t}=\frac{\alpha_{m}}{\sqrt{10}}=0,31623 \alpha_{m}$
$\alpha_{\mathrm{m}}=\alpha_{\mathrm{t}} \times \sqrt{10}=3,1623 \alpha_{\mathrm{t}}$

6 Conversion factors

Yarn count systems

Tex System	English cotton system	Metric system	Tex System
tex	N_{ec}	N_{m}	dtex
α_{t}	$9.5673 \alpha_{\mathrm{el}}$	$0,3163 \alpha_{\mathrm{m}}$	$0,3163 \alpha_{\mathrm{m}}$
$0,10452 \alpha_{\mathrm{t}}$	α_{el}	$0,03305 \alpha_{\mathrm{m}}$	$0,03305 \alpha_{\mathrm{m}}$
$3,1623 \alpha_{\mathrm{t}}$	$30.255 \alpha_{\mathrm{el}}$	α_{m}	α_{m}

7 Conversion table for turns per inch into turns per metre

Turns		Turns		Turns		Turns	
per inch	per metre	per inch	per metre	per inch	per metre	per inch	per metre
1	39,37	1,85	72,83	3,2	126,0	5,6	220,5
1,016	40	1,880	74	3,3	129,9	5,715	225
1,04	40,94	1,9	74,80	3,302	130	5,8	228,3
1,041	41	1,930	76	3,4	133,9	5,842	230
1,067	42	1,95	76,77	3,429	135	5,969	235
1,08	42,52	1,981	78	3,5	137,8	6	$236,2$
1,082	43	2	78,74	3,556	140	6,096	240
1,118	44	2,032	80	3,6	141,7	6,2	244,1
1,12	44,09	2,05	80,71	3,683	145	6,223	245
1,143	45	2,083	82	3,7	145,7	6,350	250
1,16	45,67	2,1	82,68	3,8	149,6	6,4	252,0
1,168	46	2,134	84	3,810	150	6,6	259,8
1,194	47	2,15	84,65	3,9	153,5	6,604	260
1,2	47,24	2,184	86	3,937	155	6,8	267,7
1,219	48	2,2	86,61	4	157,5	6,858	270
1,245	49	2,235	88	4,064			275,6
1,25	49,21	2,25	88,58	4,1	161,4	7,112	280
1,270	50	2,286	90	4,191	165	7,2	283,5
1,3	51,18	2,3	90,55	4,2	165,4	7,366	290
1,321	52.	2,337	$92 \sim$	4,3	169,3	T 7,4	291,3
1,35	53,15	2,35	92,52	4,318	C170	7,6	299,2
1,372	54	2,388	-94	-4,4	- 173,2	7,620	300
1,4	55,12	2,4	C94,50.	-14,445.21	1) 175	7,8	307,1
1,422	56	2,438	96	$4,5$	177,2	7,874	310
1,45	57,09	2,45	96,46	4,572	180	8	315,0
1,473	158.//stand	2,489 a/ca	98 arard	/ $4,6364 b$	$-00181,199$	8688,128	320
1,5	59,06	2,5	alog 98,43	4,699	- 185	808,2	322,8
1,524	60	2,540 ${ }^{\text {b91 }}$	15e100 ${ }^{\text {tiliso- }}$	-804,7-1983	185,0	8,382	330
1,55	61,02	2,6	102,4	$4,8$	189,0	8,4	330,7
1,575	62	2,642	104	4,826	190	8,6	338,6
1,6	62,99	2,7	106,3	4,9	192,9	8,636	340
1,626	64	2,743	108	4,953	195	8,8	346,5
1,65	64,96	2,8	110,2	5	196,9	8,890	350
1,676	66	2,845	112	5,080	200	9	354,3
1,7	66,93	2,9	114,2	5,2	204,7	9,144	360
1,727	68	2,946	116	5,207	205	9,2	362,2
1,75	68,90	3	118,1	5,334	210	9,398	370
1,778	70	3,048	120	5,4	212,6	9,4	370,1
1,8	70,87	3,1	122,0	5,461	215	9,6	378,0
1,829	72	3,175	125	5,588	220	9,652	380
						$\begin{aligned} & 9,8 \\ & 9,905 \end{aligned}$	$\begin{aligned} & 385,8 \\ & 390 \end{aligned}$
						10	393,7

8 Conversion table for twist factors

$\alpha_{\text {t }}$	$\alpha_{\text {el }}$	α_{m}	$\alpha_{\text {t }}$	$\alpha_{\text {el }}$	α_{m}	$\alpha_{\text {t }}$	$\alpha_{\text {el }}$	α_{m}	$\alpha_{\text {t }}$	$\alpha_{\text {el }}$	$\alpha_{\text {m }}$
4,975	0.52		8,8	0.9198	27,83	15,79	1.65	-	27,75	2.9	
5	0.5226	15,81	8,802	0.92	-	15,81		50	27,83	-	88
5,060	-	16	8,854	-	28	16	1.672	50,60	28	2.927	88,54
$\begin{aligned} & 5,166 \\ & 5,2 \\ & 5,218 \end{aligned}$	0.54 0.5435	$\begin{aligned} & - \\ & 16,44 \\ & 16,5 \end{aligned}$	8,9939	$\begin{aligned} & \hline 0.94 \\ & 0.9407 \end{aligned}$	$28,46$	$\begin{aligned} & 16,26 \\ & 16,44 \\ & 16,5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.725 \end{aligned}$	$\begin{aligned} & 52- \\ & 52,18 \end{aligned}$	$\begin{aligned} & 28,70 \\ & 29 \\ & 29,09 \end{aligned}$	$\begin{aligned} & 3 \\ & 3.031 \end{aligned}$	$\begin{aligned} & - \\ & 91,71 \\ & 99^{-} \end{aligned}$
			171		29						
$\begin{aligned} & 5,358 \\ & 5,376 \\ & 5,4 \end{aligned}$	$\begin{aligned} & 0.56 \\ & - \\ & 0.5644 \end{aligned}$	$\begin{aligned} & 17- \\ & 17,08 \end{aligned}$		$\begin{aligned} & 0.96 \\ & 0.9616 \end{aligned}$	$29,09$	$\begin{aligned} & \hline 16,74 \\ & 17 \\ & 17,08 \\ & 17,22 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.75 \\ & 1.777 \\ & -\overline{8} \end{aligned}$	$\begin{aligned} & 53,76 \\ & 54 \end{aligned}$	$\begin{aligned} & 29,66 \\ & 29,73 \\ & 30 \\ & 30,36 \end{aligned}$	3.1$3.136$	$\begin{aligned} & -\overline{-} \\ & 94,87 \\ & 94 \end{aligned}$
			376	. 98							
$\begin{aligned} & \hline 5,534 \\ & 5,549 \\ & 5,6 \\ & 5,692 \end{aligned}$	$\begin{aligned} & 0.58 \\ & 0.5853 \end{aligned}$	$\begin{aligned} & \hline 17,5 \\ & - \\ & 17,71 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 9,4 \\ & 9,487 \end{aligned}$	0.9825	$\begin{aligned} & 29,73 \\ & 30 \end{aligned}$						
						$\begin{aligned} & 17,5 \\ & 17,70 \end{aligned}$	$\begin{aligned} & 1.829 \\ & 1.85 \end{aligned}$	$\begin{aligned} & 55,34 \\ & 56 \end{aligned}$	$\begin{aligned} & 30,62 \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.240 \end{aligned}$	98
			$\begin{aligned} & 9,567 \\ & 9,6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1.003 \end{aligned}$	$30,36$						
						$\begin{aligned} & 18 \\ & 18,18 \end{aligned}$	$\begin{aligned} & 1.881 \\ & 1.9 \end{aligned}$	$56,92$	$\begin{aligned} & 31,57 \\ & 31,62 \\ & 32 \end{aligned}$	$\begin{aligned} & 3.3 \\ & - \\ & 3.345 \end{aligned}$	$\begin{gathered} -\overline{-} \\ 100 \\ 101,2 \end{gathered}$
5,740	0.6		9,8	1.024	30,99						
5,8	0.6062	18,34	9,803		31	$\begin{aligned} & 18,34 \\ & 18,5 \\ & 18,66 \end{aligned}$	$\begin{aligned} & -\overline{7} \\ & 1.934 \\ & 1.95 \end{aligned}$	$\begin{aligned} & \hline 58 \\ & 58,50 \end{aligned}$			
5,850		18,5							$\begin{aligned} & 32,53 \\ & 32,89 \\ & 33 \\ & 33,49 \end{aligned}$	$\begin{aligned} & 3.4 \\ & - \\ & 3.449 \\ & 3.5 \end{aligned}$	$\begin{gathered} - \\ 104 \\ 104,4 \\ - \\ \hline \end{gathered}$
5,932	0.62		10	1.045	31.62						
6	0.6271	18,97	10,12		32	$\begin{aligned} & 18,97 \\ & 19 \\ & 19,13 \end{aligned}$	$\begin{aligned} & \overline{1.986} \\ & 2 \end{aligned}$	$\begin{aligned} & 60 \\ & 60,08 \end{aligned}$			
6,008		19							$\begin{aligned} & 34 \\ & 34,15 \\ & 34,44 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.554 \\ & \overline{-}, \end{aligned}$	$\begin{aligned} & 107,5 \\ & 108 \end{aligned}$
6,123	0.64	-	, 33	87	32,89						
6,166	-	19,5	-10,44			19,5	2.038	61,65			
6,2	0.6480	19,61	$\begin{array}{\|c\|} \hline 10,72 \\ 10,75 \\ 10,8 \end{array}$	$\begin{aligned} & 1.12 \\ & 1.12942 \end{aligned}$	\cdots	19,61	2.05 H	62 H	$\begin{aligned} & \hline 35 \\ & 36,41 \end{aligned}$	$\begin{aligned} & 3.658 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 110,7 \\ & 112 \end{aligned}$
6,314	0.66				$\begin{gathered} 34 \\ 1134.15 \\ \hline \end{gathered}$	$\begin{array}{l\|} \hline 20 \\ 20,09 \\ 20,24 \end{array}$	$\begin{gathered} 2.090 \\ \text { e2:1. } \end{gathered}$	$\begin{aligned} & 63,25 \\ & - \\ & 64 \end{aligned}$			
6,325	-	20							36	3.763	113,8
6,4	0.6689	20,24							35,36	3.8	
6,483	-	20,5	$\begin{aligned} & 11,07 \\ & 11,10 \\ & 11,2 \\ & 11,38 \end{aligned}$	$\begin{gathered} - \\ 1.16 \\ 1.170 \end{gathered}$	$\begin{aligned} & 35 \\ & 150 / T \\ & 35,42 \\ & 36 \end{aligned}$	$\begin{aligned} & 20,5 \\ & 20,57 \end{aligned}$	$\begin{array}{ll} 2.143 \\ 3 & 2.15 \end{array}$	$64,83$	$\begin{aligned} & 36,68 \\ & 37 \\ & -37,31- \end{aligned}$	$\begin{aligned} & \hline- \\ & 3.867 \\ & 3.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 116 \\ & 117,0 \end{aligned}$
6,506	0.68										
6,6	0.6898	20,87tty					3640				
6,641	-	21				$\begin{gathered} \text { is } 21, \mathrm{or}-80 \mathrm{c} \\ 21,05 \end{gathered}$	$\begin{gathered} -2.995 \\ 2.2 \end{gathered}$		$\begin{aligned} & 37,94 \\ & 38 \\ & 38,27 \end{aligned}$	$\begin{aligned} & 3.972 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 120 \\ & 120,2 \end{aligned}$
6,697	0.7	-	$\begin{aligned} & 111,48 \\ & 11,6 \\ & 11,70 \end{aligned}$	$\begin{aligned} & \hline 1.2 \\ & 1.212 \end{aligned}$	$36,68$$37$						
6,8	0.7107	21,5				$\begin{aligned} & 21,5 \\ & 21,53 \end{aligned}$					
6,888	0.72						$\begin{aligned} & 2.247 \\ & 2.25 \end{aligned}$	${ }^{68}$	$\begin{aligned} & \hline 39 \\ & 39,23 \end{aligned}$	$\begin{aligned} & 4.076 \\ & 4.1 \\ & \hline \end{aligned}$	123,3
6,957		22	11,961212,02	$\begin{aligned} & 1.25 \\ & 1.254 \\ & - \end{aligned}$	$\begin{aligned} & -\overline{-} \\ & 37,95 \\ & 38 \end{aligned}$						
7,557 7,080	0.7316	22,14				$\begin{aligned} & 22 \\ & 22,14 \end{aligned}$	2.3	$\begin{aligned} & 69,57 \\ & 70 \end{aligned}$	$\begin{aligned} & 39,53 \\ & 40 \\ & 40,18 \end{aligned}$	$\begin{aligned} & -\overline{1} 81 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 125 \\ & 126,5 \end{aligned}$
7,080	0.74										
7,115	-	22,5	$\begin{aligned} & 12,33 \\ & 12,44 \\ & 12,5 \\ & 12,65 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.3^{-} \\ & 1.307 \end{aligned}$	$\begin{aligned} & 39 \\ & - \\ & 39,53 \\ & 40 \end{aligned}$	$\begin{aligned} & 22,48 \\ & 22,5 \end{aligned}$	$\begin{aligned} & 2.35 \\ & 2.352 \end{aligned}$				
7,2	0.7525	22,77							$\begin{aligned} & 41 \\ & 41,12 \end{aligned}$	$\begin{aligned} & 4.285 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 129,7 \\ & 130 \end{aligned}$
7,271	0.76					$\begin{aligned} & 22,77 \\ & 22,96 \\ & 23 \end{aligned}$	$\begin{aligned} & 2 . \overline{4} \\ & 2.404 \end{aligned}$	$\begin{aligned} & \hline 72 \\ & - \\ & 72,73 \end{aligned}$			
7,273		23							$\begin{aligned} & \hline 42 \\ & 42,10 \end{aligned}$	$\begin{aligned} & 4.390 \\ & 4.4 \end{aligned}$	132,8-
7,4	0.7734	23,40	12,9212,9713	$\begin{gathered} 1.35 \\ 1.359 \end{gathered}$	$\begin{aligned} & -\quad- \\ & 41,11 \end{aligned}$						
7,431		23,5				$\begin{aligned} & 23,40 \\ & 23,44 \\ & 23,5 \end{aligned}$	$\begin{aligned} & -\overline{-} \\ & 2.45 \\ & 2.456 \end{aligned}$	$\begin{gathered} 74 \\ - \\ -74,31 \end{gathered}$	$\begin{aligned} & 42,69 \\ & 43 \\ & 43,05 \end{aligned}$	$\begin{aligned} & -\overline{-} \\ & 4.494 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 135 \\ & 136,0 \end{aligned}$
7,462	0.78										
7,590	-	24	$\begin{aligned} & 13,28 \\ & 13,39 \\ & 13,5 \\ & 13,60 \end{aligned}$	$\begin{aligned} & \hline- \\ & 1.4 \\ & 1.411 \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & - \\ & 42,69 \\ & 43 \end{aligned}$						
7,6	0.7944	24,03				$\begin{aligned} & 23,92 \\ & 24 \\ & 24,03 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.508 \end{aligned}$	$\begin{aligned} & - \\ & 75,89 \\ & 76 \end{aligned}$	44 44,27	4.6-	$\begin{aligned} & \hline 139,1 \\ & 140 \end{aligned}$
7,654	0.8										
7,748		24,5							$\begin{aligned} & 44,97 \\ & 45 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.703 \end{aligned}$	$\overline{142,3}$
7,8 7845	0.8153	24,67	$\begin{aligned} & 13,87 \\ & 13,91 \\ & 14 \\ & 14,23 \end{aligned}$	$\begin{gathered} \hline 1.45 \\ - \\ 1.463 \end{gathered}$	$\begin{aligned} & 4- \\ & 44,27 \\ & 45 \end{aligned}$	$\begin{aligned} & 24,5 \\ & 24,67 \end{aligned}$	2.561	$\begin{aligned} & 77,48 \\ & 78 \end{aligned}$	$\begin{aligned} & 45,85 \\ & 45,92 \\ & 46 \end{aligned}$	$\begin{aligned} & 4 . \overline{8} \\ & 4.808 \end{aligned}$	$\begin{gathered} 145 \\ - \\ 145,5 \end{gathered}$
	0.8362	25					2.6	$\begin{aligned} & -\quad- \\ & 79,06 \\ & 80 \end{aligned}$			
8,037	0.84	-	$\begin{aligned} & 14,35 \\ & 14,5 \\ & 14,55 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.516 \end{aligned}$	$\begin{aligned} & - \\ & 45,85 \\ & 46 \end{aligned}$	$\begin{aligned} & 25 \\ & 25,30 \end{aligned}$	2.613		$\begin{aligned} & 46,88 \\ & 47 \\ & 47,43 \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & 4.912 \end{aligned}$	$\begin{aligned} & -\overline{148,6} \\ & 150 \end{aligned}$
8,2	0.8571	25,93									
8,222		26				25,83	$\begin{aligned} & 2.7 \\ & -7 \\ & \hline .718 \end{aligned}$				
8,228	0.86	-	$\begin{aligned} & 14,83 \\ & 14,86 \\ & 15 \\ & 15,18 \end{aligned}$	$\begin{array}{\|c\|} \hline 1.55 \\ 1.568 \\ \hline \end{array}$	$\begin{aligned} & -\overline{-} \\ & 47,43 \\ & 48 \end{aligned}$	$\begin{aligned} & 25,93 \\ & 26 \end{aligned}$		$\begin{aligned} & 82 \\ & 82,22 \end{aligned}$	$\begin{aligned} & 47,84 \\ & 48 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5.017 \end{aligned}$	$151,8$
8,4	0.8780	26,56									
8,419	0.88	-				$\begin{aligned} & 26,56 \\ & 26,79 \\ & 27 \\ & 27,20 \end{aligned}$	2.8 2.822	$\begin{aligned} & 84 \\ & - \\ & 85,38 \\ & 86 \end{aligned}$	49	5.121	155
8,538		27							$\begin{aligned} & 49,75 \\ & 50,0 \\ & 50,60 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.226 \end{aligned}$	-
8,6	0.8989	27,20	15,31	1.6	-						158,1
8,611	0.9	-	15,5	1.620	49						160

[^0]: Descriptors : textiles, computation, torsion angle.

