This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: A 453/A453M-99 Designation: A 453/A 453M - 00

An American National Standard

Standard Specification for High-Temperature Bolting Materials, with Expansion Coefficients Comparable to Austenitic Stainless Steels¹

This standard is issued under the fixed designation A 453/A 453M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification² covers four grades of bolting materials with nine classes of yield strength ranging from 50 to 120 ksi [345 to 827 MPa] for use in high-temperature service such as fasteners for pressure vessel and valve flanges. The material requires special processing and is not intended for general purpose applications. The term "bolting material," as used in this specification, covers rolled, forged, or hot-extruded bars; bolts, nuts, screws, washers, studs, and stud bolts. Headed bolts and rolled threads may be supplied.

NOTE 1-Other bolting materials are covered by Specification A 193/A 193M and Specification A 437/A 437M.

1.2 Supplementary Requirement S 1 of an optional nature is provided. This shall apply only when specified by the purchaser in the order.

1.3 This specification is expressed in both inch-pound units and in SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished to inch-pound units.

1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.

2. Referenced Documents

2.1 ASTM Standards:

A 193/A 193M Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service³ A370Test Methods and Definitions for Mechanical Testing of Steel Products

A 437/A 437M Specification for Alloy-Steel Turbine-Type Bolting Material Specially Heat Treated for High-Temperature Service³

A 962/A 962M Specification for Steel Fasteners or Fastener Materials, or Both, Intended for Use at Any Temperature from Cryogenic to the Creep Range³

E30Test Methods for Chemical Analysis of Steel, Cast Iron, Open-Hearth Iron, and Wrought Iron

E59Practice for Sampling Steel and Iron for Determination of Chemical Composition

E 139 Practice for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials

2.2 ANSI Standards:

B1.1Unified Screw Threads

B18.2.1 Square and Hex Bolts and Screws Including Hex Cap Screws and Lag Screws

B18.2.2 Square and Hex Nuts

B18.3Hexagon Socket and Spline Socket Screws

2.3 AIAG Standard:

B-5 02.00 Primary Metals Identification Tag Application Standard⁴

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This specification is under the jurisdiction of ASTM Committee <u>A-1-A01</u> on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Valves, Fittings, Bolting, and Flanges for High and Subatmospheric Temperatures.

Current edition approved March 10, $\frac{1999 \cdot 2000}{2000}$. Published May $\frac{1999 \cdot 2000}{2000}$. Originally published as A 453 – 61 T. Last previous edition $\frac{A453/A453M-96^{e1}}{A 453/A 453M - 99}$.

² For ASME Boiler and Pressure Vessel Code Applications see related Specification SA-453 in Section II of that Code.

³ Annual Book of ASTM Standards, Vol 01.01.

⁴ Annual Book of ASTM Standards, Vol 01.03., Vol 03.01.

3.1.1 *bolting material*—this covers rolled, forged, or hot-extruded bars; bolts, nuts, screws, washers, studs, and stud bolts; and also includes those manufactured by upset heading or roll threading techniques.

曲) A 453/A 453M – 00

3.1.2 *heat-treatment charge*—one heat of material heat treated in one batch. If a continuous operation is used, the weight processed as a heat-treatment charge shall not exceed the weights in Table 1.

3.1.3 *lot*—a lot shall consist of the quantities shown in Table 2.

4. Ordering Information

4.1 The inquiry and order shall indicate the following:

4.1.1 Quantity (weight or number of pieces),

4.1.2 Type of material (bars, bolts, nuts, etc.),

- 4.1.3 Grade and class,
- 4.1.4 Method of finishing (see 5.26.1),
- 4.1.5 Type of thread desired (see 5.2.26.1.1),
- 4.1.6 Alternative test method option (see 7.2.4.3),
- 4.1.7Bolt shape option, if any (see 8.2),
- 4.1.8Thread option, if any (see 8.3),
- 4.1.9Test method for surface quality, if any (see 10),

4.1.10Test location option, if any (see 11),

4.1.11Rejection option, if any (see 12.1), and

4.1.12If stress-rupture testing is not required (see

4.1.7 Bolt shape option, if any,

4.1.8 Thread option, if any,

4.1.9 Test method for surface quality, if any,

4.1.10 Test location option, if any,

4.1.11 Rejection option, if any, and

4.1.12 If stress-rupture testing is not required (see 7.2.1).

5. <u>Common Requirements</u>

5.1 Material and fasteners supplied to this specification shall conform to the requirements of Specification A 962/A 962M. These requirements include test methods, finish, thread dimensions, marking, certification, optional supplementary requirements, and others. Failure to comply with the requirements of Specification A 962/A 962M constitutes nonconformance with this specification. In case of conflict between the requirements of this specification and Specification A 962/A 962M, this specification shall prevail.

ASTM A453/A453M-00

6. Materials and Manufacture log/standards/sist/456ec433-c007-453a-bb90-f1b299318223/astm-a453-a453m-00

5.1*Melting Process*:

5.1.1The material shall be made by one or more of the following processes: electric-furnace, induction furnace, or consumable-electrode practice.

5.1.2Vacuum, protective atmospheres, or protective slags may be used during melting or pouring of the heat.

5.2

<u>6.1</u> Finishing Process:

5.2.1The product shall be hot finished or cold finished (ground, rough turned or cold drawn) as specified on the purchase order. 5.2.2

<u>6.1.1</u> Threads may be performed by machining or rolling. For Type 1 bolting, threading shall be performed after precipitation heat treatment. Types M1 and M2 bolting shall have machine cut threads. For Types 2 R1 and R2 bolting shall have rolled threads. Types R1 and M1 bolting, threading shall be threaded performed after precipitation heat treatment. Types R2 and M2 bolting shall be threaded after solution heat treatment but prior to precipitation heat treatment. When not specified by the purchaser, the type supplied shall be the option of the manufacturer.

5.3

TABLE 2 1 ± Continuous Heat-Treatment Charge Size

Diameter, in. [mm]	MaxWeimum Loght-Size, lb [kg]
11/2 [38] and under	200 [90]
Over 11/2 [38] to 13/4 [44], incl	300 [140]
To 1 ³ / ₄ [44]	3000 [1400]
Over 13/4 [44] to 21/2 [63], incl	600 [270]
Over 13/4 [44] to 21/2 [63]	6000 [2700]
Over 21/2 [63]	20 pieces
Over 21/2 [63]	12000 [5400]

🕼 A 453/A 453M – 00

TABLE-9_2 Permissible Variati Lons int Size of Cold-Finished Bars

SpecDified Size, in. [amm]	Permissible Variations from Specified Sizer, in. [mm]A		
	Ove r	Under	
	Maximum Lot Sizer	Under, Ib [kg]	
Over ¹ /2 to 1[13 to 25],excl	0.002 [0.05]		
11/2 [38] and under	200 [90]		
	0.002 [0.05]		
Over 11/2 [38] to 13/4 [44], incl	300 [140]		
13/4 to 11/2 [25 to38], excl	0.0025 [0.06]	0.0025 [0.06]	
Over 13/4 [44] to 21/2 [63], incl	<u>6</u>]	00 [270]	
11/2 to 4[38 to 100], incl ^B	0.003 [0.08]	0.003 [0.08]	
Over 21/2 [63]	<u>20</u> .003 [0.08]	0.003 [0.08] pieces	

^AWhen it is necessary to heat treat or heat treat and pickle after cold finishing, because of special hardness or mechanical property requirements, the permissible variations are generally double those shown in the table.

ariations are generally double those shown in the table. ^BFor size tolerances of sizes over 4 in. [100 mm], the manufacturer should be

consulted.

6.2 Heat Treatment—Each grade and class shall be heat treated as prescribed in Table 3.

6.Chemical Composition

6.1*Heat Analysis*—An analysis of each heat of steel shall be made by the manufacturer to determine the percentages of the elements specified in Table 4. This analysis shall be made from a test sample taken during the pouring of the heat. The chemical composition thus determined shall be reported to the purchaser or his representative and shall conform to the requirements specified in Table 4.

6.1.1Steels with added lead shall not be used.

6.2Product Analysis:

6.2.1A product analysis may be made by the purchaser from tension samples representing the bolting material.

6.2.2Samples for chemical analysis, except for spectro-chemical analysis, shall be taken in accordance with Practice E59. The hemical composition thus determined shall conform to the requirements for product analysis variation as specified in Table 4.

shermear composition thus determined shart conform to the requirements for product analysis variation as specified in r	able 4
6.2.3A product analysis shall be made by the manufacturer of bar stock made from vacuum-arc remetted steel.	

TABLE 3	Heat Treatment Requirements ^A	
---------	--	--

Grade	Class	Solution Treatment ASTM A	53/A453M-00 Hardening Treatment
660 660	/stan	$1650\pm 25^{\circ}$ F [900 \pm 14°C], hold 2 h, min, and liquid quench 1650 \pm 25°F [900 \pm 14°C], hold 2 h, min, and liquid quench	3-c007-453a 1325 ± 25°F [720 ± 14°C], hold 16 h, air cool 1325 ± 25°F [720 ± 14°C], hold 16 h, air cool 1325 ± 25°F [720 ± 14°C], hold 16 h, air cool
		$1800 \pm 25^{\circ}$ F [980 $\pm 14^{\circ}$ C], noid i n, min, and liquid quench	1325 ± 25°F [720 ± 14°C], hold 16 h, air cool
	E E	$\frac{1800 \pm 25^{\circ}F}{1980 \pm 14^{\circ}C}$, noid 1 n, min, and liquid quench	$\frac{1325 \pm 25^{\circ}F}{1405 \pm 0500}F$
-	-6	$1800 \pm 25^{\circ}$ F [980 $\pm 14^{\circ}$ G], noid 1 n min, and oil quench	1425 ± 25°F [775 ± 14°C] hold 16 h, air cool
	~	$1000 \pm 05\%$ [000 $\pm 14\%$] hold 1 h min and all suprah	1200 ± 25°F (650 ± 14°C) noid 16 h, air cool
	<u> </u>	$1800 \pm 25^{\circ}$ F [980 $\pm 14^{\circ}$ C], hold 1 h min, and oil quench	$\frac{1425 \pm 25^{\circ}F}{1000 \pm 05^{\circ}F} = \frac{14^{\circ}C}{1000} = \frac{16}{1000} = \frac$
054			$\frac{1200\pm 25^{\circ}F}{1650\pm 14^{\circ}C}$
-651	- A		not-cold worked at 1200°F [650°O] min with 15 % min reduction in cross-sectional area,
054			Stress-relief anneal at 1200°F [050°C] min of 4 n, min
651	<u>A</u>		not-cold worked at 1200°F [650°C] min with 15 % min reduction in cross-sectional area,
			stress-relief anneal at 1200°F [650°C] min or 4 n, min
			not-cold worked at 1200°F [650°O] min with 15 % min reduction of cross-sectional area,
			Stress-relief anneal at 1350°F [/30°C] min for 4 n, min
	B		not-cold worked at 1200°F [650°C] min with 15 % min reduction of cross-sectional area,
000		1000 + 05%E [000 + 14%0] hald 0 h limid more th	
-662	- A	1800± 25°F [980 ± 14°C], noia 2 n, iiquia quench	$1350 \text{ to } 1400^{\circ}\text{F} [730 \text{ to } 760^{\circ}\text{C}], \text{ noid } 20 \text{ n, turnace cool to } 1200 \pm 25^{\circ}\text{F} [650 \pm 14^{\circ}\text{C}], \text{ held } 00 \text{ h err}$
000			
002	<u>A</u>	1800 ± 25 F [980 ± 14 C], hold 2 fl, liquid quench	$\frac{1350 \text{ to } 1400 \text{ F} [730 \text{ to } 760 \text{ C}], \text{ nota 20 H, numace cool to } 1200 \pm 25 \text{ F} [050 \pm 14 \text{ C}],}{1400 \text{ F} [730 \text{ to } 760 \text{ C}], \text{ nota 20 H, numace cool to } 1200 \pm 25 \text{ F} [050 \pm 14 \text{ C}],}$
		1950 ± 25°F [1065 ± 14°C], noia 2 n, iiquia quench	$1350 \text{ to } 1400^{\circ}\text{F} [730 \text{ to } 760^{\circ}\text{C}], \text{ noid } 20 \text{ n}, \text{ turnace cool to } 1200 \pm 25^{\circ}\text{F} [650 \pm 14^{\circ}\text{C}],$
			noid 20 n, air cool
	B	$1950 \pm 25^{\circ}$ F [1065 $\pm 14^{\circ}$ C], noid 2 h, liquid quench	$\frac{1350 \text{ to } 1400^{\circ}\text{F} [730 \text{ to } 760^{\circ}\text{C}], \text{ noid } 20 \text{ n}, \text{ turnace cool to } 1200 \pm 25^{\circ}\text{F} [650 \pm 14^{\circ}\text{C}],}{1200 \pm 25^{\circ}\text{F} [650 \pm 14^{\circ}\text{C}],}$
COF	^	$1800 \pm 05\%$ [080 $\pm 14\%$ C] hold 0 h liquid quanch	<u>noid 20 n, air cool</u>
-005		1000 ± 20 F [980 \pm 14 G], hold 3 h, liquid quench	$\frac{1300 \text{ to } 1400 \text{ F} [730 \text{ to } 700 \text{ C}], \text{ find 20 ft}, \text{ full face cool to } 1200 \pm 25 \text{ F} [030 \pm 14 \text{ C}],}{14 \text{ C}],}$
005		1000 / 05%5 [000 / 11%0] hald 0 h liquid quarte	
665	A	$1800 \pm 25^{\circ}$ F [980 $\pm 14^{\circ}$ C], noid 3 h, liquid quench	$\frac{1350 \text{ to } 1400^{\circ}\text{F} [730 \text{ to } 760^{\circ}\text{C}], \text{ noid } 20 \text{ n, turnace cool to } 1200 \pm 25^{\circ}\text{F} [650 \pm 14^{\circ}\text{C}],}{1400^{\circ}\text{C} [1000^{\circ}\text{C}], \text{ noid } 20 \text{ h, turnace cool to } 1200 \pm 25^{\circ}\text{F} [650 \pm 14^{\circ}\text{C}],}$
	Б	$0000 \pm 05\%$ [1005 $\pm 14\%$] hold 0 h liquid guarab	$\frac{\text{noid 20 n, air cool}}{1350 \text{ to } 1400\%\text{ [730 to 760\%\text{]}}} = \frac{1000 \text{ 20 n, air cool}}{1400\%} = 1000 \pm 05\%\text{ [650 \pm 14\%\text{]}}$
		∠₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	$1350 \text{ to } 1400 \text{ F} [730 \text{ to } 760^{\circ}\text{C}], \text{ noid } 20 \text{ n, turnace cool to } 1200 \pm 25^{\circ}\text{F} [650 \pm 14^{\circ}\text{C}],$
	B	$2000 \pm 25^{\circ}$ F [1095 \pm 14°C], hold 3 h, liquid quench	1350 to 1400° F [730 to 760°C], hold 20 h, turnace cool to $1200 \pm 25^{\circ}$ F [650 $\pm 14^{\circ}$ C],
			hold 20 h, air cool

^A Times refer to the minimum time material is required to be at temperature.

🕼 A 453/A 453M – 00

TABLE 4 Chemical Requirements

		· · ·		
-	Grade 660		Grade 651	
UNS Number		<u>S66286</u>		<u>S63198</u>
		Product Analysis Variation,		Product Analysis Variation,
Content, %	Content, %	Over or Under,- %	Content,- %	Over or Under,- %
Carbon	0.08 max	0.01 over	0.28-0.35	0.02
Manganese	2.00 max	0.04	0.75-1.50	0.04
Phosphorus	0.040 max	0.005 over	0.040 max	0.005 over
Sulfur	0.030 max	0.005 over	0.030 max	0.005 over
Silicon	1.00 max	0.05	0.30-0.80	0.05
Nickel	24.0-27.0	0.20	8.0-11.0	0.15
Chromium	13.5-16.0	0.20	18.0-21.0	0.25
Molybdenum	1 00-1 50	0.05	1 00-1 75	0.05
Tungsten	1.00 1.00	0.00	1.00-1.75	0.05
Titanium	 1 90–2 35	0.05	0 10-0 35	0.05 over
Columbium ^A	1.30-2.05	0.05	0.25_0.60	0.05
Aluminum	0.35 max	0.05 over	0.20-0.00	0.05
Nonadium	0.35 max			
vanadium	0.10-0.50	0.03		
Boron	0.001-0.010	0.0004 under to		
-		0.001 over		
Copper			0.50 max	0.03 over
-	e	rade 662	e	Grade 665
	G	rade 662	<u>G</u>	Grade 665
UNS Number		<u>S66220</u>		<u>S66545</u>
Content, %		Product Analysis, Variation		Product Analysis Variation,
-		Over or Under, %	Content, %	Over or Under, %
		Product Analysis, Variation		Product Analysis Variation,
_	Content, %	Over or Under, %	Content, %	Over or Under, %
Carbon	0.08 max	0.01 over	0.08 max	0.01 over
Manganese	0.40-1.00	0.03	1.25-2.00	0.04
Phosphorus	0.040 max	0.005 over	0.040 max	0.005 over
Sulfur	0.030 max	0.005 over	0.030 max	0.005 over
Silicon	0.40–1.00	0.05	0.10-0.80	0.05
Nickel	24.0–28.0	0.20	24.0-28.0	0.20
Chromium	12.0–15.0	DCU 0.15 Prev	12.0-15.0	0.15
Molvbdenum	2.0-3.5	0.10	1.25-2.25	0.10
Titanium	1 80-2 10	0.05	2 70-3 3	0.05
Aluminum	0.35 max	0.05 over	0.25 max	0.05 over
Copper	0.50 max	ASTV0.03 over / A453M-00	0.25 max	0.03 over
Boron	0.001-0.010	0.0004 under to	0.01_0.07	0.005
https://standards.itel	h.ai/catalog/standard	S/SIST 45 0.001 over	p90-f16299318	223/astm-a453-a453m-0

^A Or columbium plus tantalum.

6.3Methods of Analysis—For referee purposes, Test Methods E30 shall be used.

7. Mechanical Properties

7.1 Tension Test:

7.1.1 *Requirements*—The material shall conform to the room-temperature tensile in each heat-treatment charge (see 3). <u>—The</u> material in each heat-treatment charge shall conform to the room-temperature tensile requirements in Table 5.

7.1.2 Number of Specimens:

7.1.2.1 *Heat-Treated Bars*—When not more than two sizes of bars are heat treated in the same load, one tension test shall be made from each size in each heat of material in the heat-treatment charge (see 3.1.2). When more than two sizes of bars are treated in the same charge, one tension test shall be made from one bar of each of the two largest diameters from each heat of material in the heat-treating charge.

7.1.2.2 *Finished Parts*—One tension test shall be made if the lot consists of parts of the same nominal diameter. If the lot consists of parts of more than one nominal diameter, one tension test shall be made from each nominal diameter of each heat involved in the lot (see 3).

7.1.2.3 The diameter range shall be in increments of $\frac{1}{2}$ in. [12.5 mm].

7.1.2.4Tension tests are not required on finished parts that are fabricated from heat-treated bars furnished in accordance with the requirements of this specification and tested in accordance with 7.1.2.1, provided they are not given a subsequent heat treatment. 7.1.3Test Location and Orientation— Specimens shall be taken in accordance with Test Methods and Definitions A370, Annex

A1, from the bar stock used to make the product.

7.1.4Test Methods: