

SLOVENSKI STANDARD

SIST EN 61300-3-32:2007

01-september-2007

CdH b]`gdc'b]`YYa Ybh]`b`dUgjj bY_ca dcbYbhY`Cgbcj b]`dfYg_i yUb]`b`a Yf]`b]`
dcg`cd_`E' !' &"XY .`DfYg_Uj Y]`b`a Yf]`j Y`E`A Yf]`j YX]`gdYfn]`Y`[`YXY`bUj fghc
dc`Uf]`nUW`Y`df]`dUgjj b]`cdH b]`_ca dcbYbhA `f97 `* % \$\$! !' &&\$\$*`L

Fibre optic interconnecting devices and passive components - Basic test and measurement procedures -- Part 3-32: Examinations and measurements - Polarization mode dispersion measurement for passive optical components (IEC 61300-3-32:2006)

iTeh STANDARD PREVIEW

Lichtwellenleiter - Verbindungselemente und passive Bauteile - Grundlegende Prüf- und Messverfahren - Teil 3-32: Untersuchungen und Messungen - Messung der Polarisationsmodendispersion für passive optische Bauteile (IEC 61300-3-32:2006)

[SIST EN 61300-3-32:2007](https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-1290a400caaisc-61300-3-32-2007)

Dispositifs d'interconnexion et composants passifs à fibres optiques - Méthodes fondamentales d'essais et de mesures -- Partie 3-32: Examens et mesures - Mesure de la dispersion de mode de polarisation pour composants optiques passifs (IEC 61300-3-32:2006)

Ta slovenski standard je istoveten z: **EN 61300-3-32:2006**

ICS:

33.180.20 **Ú[ç^: [çæ} ^Áæ`laç^Áæ** [] cã } æç|æ } æ Fibre optic interconnecting devices

SIST EN 61300-3-32:2007

en,fr,de

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST EN 61300-3-32:2007](#)

<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007>

**Fibre optic interconnecting devices and passive components -
Basic test and measurement procedures
Part 3-32: Examinations and measurements -
Polarization mode dispersion measurement
for passive optical components
(IEC 61300-3-32:2006)**

Dispositifs d'interconnexion et
composants passifs à fibres optiques -
Méthodes fondamentales d'essais
et de mesures
Partie 3-32: Examens et mesures -
Mesure de la dispersion de mode
de polarisation pour composants
optiques passifs
(CEI 61300-3-32:2006)

Lichtwellenleiter -
Verbindungselemente
und passive Bauteile -
Grundlegende Prüf- und Messverfahren
Teil 3-32: Untersuchungen
und Messungen -
Messung der
Polarisationsmodendispersion
für passive optische Bauteile
(IEC 61300-3-32:2006)

PRE STANDARD PREVIEW
(standards.iteh.ai)
[SIST EN 61300-3-32:2007](https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007)
<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007>

This European Standard was approved by CENELEC on 2006-09-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

Foreword

The text of document 86B/2325/FDIS, future edition 1 of IEC 61300-3-32, prepared by SC 86B, Fibre optic interconnecting devices and passive components, of IEC TC 86, Fibre optics, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61300-3-32 on 2006-09-01.

The following dates were fixed:

- latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement (dop) 2007-06-01
- latest date by which the national standards conflicting with the EN have to be withdrawn (dow) 2009-09-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 61300-3-32:2006 was approved by CENELEC as a European Standard without any modification.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST EN 61300-3-32:2007](#)
<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007>

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	<u>EN/HD</u>	<u>Year</u>
IEC 60793-1-48	⁻¹⁾	Optical fibres Part 1-48: Measurement methods and test procedures - Polarization mode dispersion	EN 60793-1-48	2003 ²⁾
IEC/TR 61282-3	⁻¹⁾	Fibre optic communication system design guides Part 3: Calculation of polarization mode dispersion	-	-
IEC/TR 61282-9	⁻¹⁾	Fibre optic communication system design guides Part 9: Guidance on polarization mode dispersion measurements and theory	-	-
IEC 61300-3-2	⁻¹⁾	Fibre optic interconnecting devices and passive components - Basic test and measurement procedures Part 3-2: Examinations and measurements - Polarization dependence of attenuation in a single-mode fibre optic device	EN 61300-3-2	1999 ²⁾

¹⁾ Undated reference.

²⁾ Valid edition at date of issue.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST EN 61300-3-32:2007](#)

<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007>

**NORME
INTERNATIONALE
INTERNATIONAL
STANDARD**

**CEI
IEC**

61300-3-32

Première édition
First edition
2006-08

**Dispositifs d'interconnexion et
composants passifs à fibres optiques –
Méthodes fondamentales d'essais et de mesures –**

Partie 3-32:

**Examens et mesures –
Mesure de la dispersion de mode de polarisation
pour composants optiques passifs**

[SIST EN 61300-3-32:2007](https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429fa40eaa/sist-en-61300-3-32-2007)

<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429fa40eaa/sist-en-61300-3-32-2007>
**Fibre optic interconnecting devices
and passive components –
Basic test and measurement procedures –**

**Part 3-32:
Examinations and measurements –
Polarization mode dispersion measurement
for passive optical components**

© IEC 2006 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

**CODE PRIX
PRICE CODE XA**

*Pour prix, voir catalogue en vigueur
For price, see current catalogue*

CONTENTS

FOREWORD	7
1 Scope	11
2 Normative references	11
3 Abbreviations	13
4 General description	13
4.1 Mode coupling	15
4.2 Narrowband devices	15
4.3 Polarization sensitivity	17
4.4 Multiple path interference	17
4.5 Fibre pigtails	17
4.6 Reference test methods	19
4.7 Polarization mode dispersion coefficient	19
4.8 Analyses used in various test methods	21
4.9 Calculation of polarization mode dispersion	21
4.10 Calibration	21
5 Device under test	21
6 Stokes parameter evaluation method	27
6.1 Apparatus	27
6.2 Procedure	33
7 Polarization phase shift measurement method	43
7.1 Apparatus	45
7.2 Procedure	49
8 Fixed analyser measurement method	55
8.1 Apparatus	55
8.2 Procedure	63
9 Interferometric method	71
9.1 Apparatus	71
9.2 Procedure	77
10 Modulation phase shift method	87
10.1 Apparatus	89
10.2 Procedure	99
11 Details to be specified	103
11.1 Wavelength range source	103
11.2 Polarizer/analyser	105
11.3 Temporary joint	105
11.4 Device under test	105
Annex A (informative) Cosine Fourier transform analysis	107
Bibliography	113

Table 1 – Technical applicability of the various test methods to different DUT types..... 25

Figure 1 – Effect of PMD phenomenon on transmission of an information bit pulse in a device.....	15
Figure 2 – Determination of polarization dispersion vector and principal states of polarization.....	23
Figure 3 – Functional diagram of a generic measurement system based on Stokes parameter evaluation	27
Figure 4 – Test set-ups for the Stokes parameter evaluation method	29
Figure 5 – Sample results from the Stokes parameter evaluation method.....	41
Figure 6 – Test set-up for the polarization phase shift method	45
Figure 7 – Differential group delay versus wavelength for a 50/100 GHz interleaver	53
Figure 8 – Block diagrams for fixed analyser method	57
Figure 9 – Example of the <i>R</i> -function for the fixed analyser method	61
Figure 10 – Polarization mode dispersion by Fourier analysis	69
Figure 11 – Schematic diagram for the interferometric method for passive fibre optic devices	73
Figure 12 – Typical data obtained by interferometric method	79
Figure 13 – Fringe patterns obtained with QINTY and VOSOP scrambling	85
Figure 14 – Apparatus to make the DGD measurement.....	89
Figure 15 – Apparatus to make the DGD measurement using a polarization modulation technique.....	97

<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007>

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**FIBRE OPTIC INTERCONNECTING DEVICES
AND PASSIVE COMPONENTS –
BASIC TEST AND MEASUREMENT PROCEDURES –**

**Part 3-32: Examinations and measurements –
Polarization mode dispersion measurement
for passive optical components**

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61300-3-32 has been prepared by subcommittee 86B: Fibre optic interconnecting devices and passive components, of IEC technical committee 86: Fibre optics.

The text of this standard is based on the following documents:

FDIS	Report on voting
86B/2325/FDIS	86B/2378/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 61300 consists of the following parts, under the general title *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures*:

Part 1: General and guidance

Part 2: Tests

Part 3: Examinations and measurements

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

[SIST EN 61300-3-32:2007](#)

<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007>

FIBRE OPTIC INTERCONNECTING DEVICES AND PASSIVE COMPONENTS – BASIC TEST AND MEASUREMENT PROCEDURES –

Part 3-32: Examinations and measurements – Polarization mode dispersion measurement for passive optical components

1 Scope

This part of IEC 61300 presents a number of alternative methods for measuring the polarization mode dispersion (PMD) of a passive fibre optic device under test (DUT). These methods typically measure PMD using either a frequency domain or time domain approach. In the frequency domain, the polarization properties of the DUT are analysed. In the time domain approach, the pulse delay or broadening is observed.

This procedure will cover measurements of both broadband, and narrowband dense wavelength division multiplexing (DWDM) passive fibre optic devices. Differences between measurement practices for these varied classes of passive fibre optic devices will be noted in the text.

iTeh STANDARD PREVIEW

This procedure can be applied to laboratory, factory and field measurements of PMD in passive fibre optic devices. Limitation of the application of some methods will be noted in the text when necessary.

[SIST EN 61300-3-32:2007](https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460ea/sist-en-61300-3-32-2007)

This procedure can be applied to a transmissive or reflective DUT. In the latter case, the DUT connection is via a coupler or circulator, which should have a known very low PMD value.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

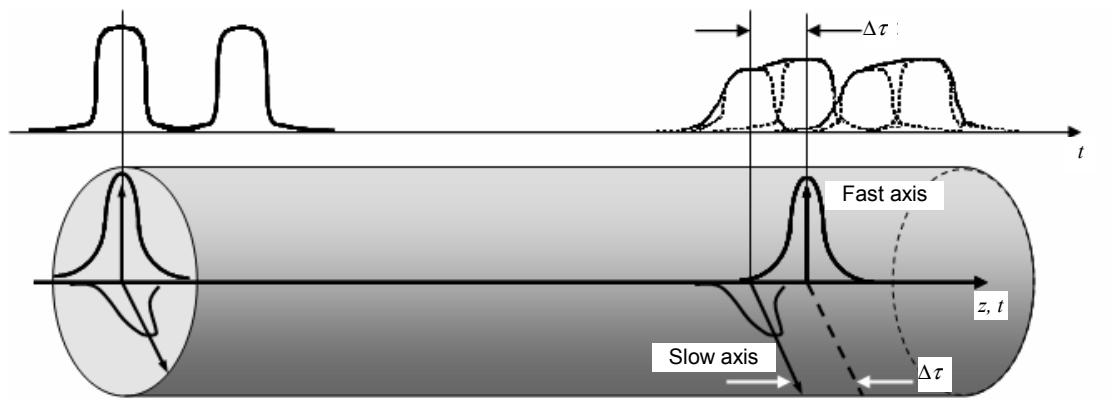
IEC 60793-1-48, *Optical fibres – Part 1-48: Measurement methods and test procedures – Polarisation mode dispersion*

IEC 61282-3, *Fibre optic communication system design guides – Part 3: Calculation of polarization mode dispersion*

IEC 61282-9, *Fibre optic communication system design guides – Part 9: Guidance on polarization mode dispersion measurements and theory*

IEC 61300-3-2, *Fibre optic interconnecting devices and passive components – Basic test and measurement procedures – Part 3-2: Examinations and measurements – Polarization dependence of attenuation in a single-mode fibre optic device*

3 Abbreviations


ASE:	amplified spontaneous emission
DGD:	differential group delay
DOP:	degree of polarization
DUT:	device under test
DWDM:	dense wavelength division multiplexing
FA:	fixed analyser
FAFT:	fixed analyser Fourier transform
FAEC:	fixed analyser extrema counting
FWHM:	full width at half the maximum
INTY:	interferometry
ISI:	inter-symbol interference
JME:	Jones matrix eigenanalysis
MMA:	Mueller matrix analysis
MPS:	modulation phase shift
PDL:	polarization dependent loss
PMD:	polarization mode dispersion
PDV:	polarization dispersion vector
PPS:	polarization phase shift
PS:	Poincaré sphere
PSA:	Poincaré sphere analysis <small>SIST EN 61300-3-32:2007 https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-4290ca400ca/sist-en-61300-3-32-2007</small>
PSP:	principal states of polarization
RBW:	resolution bandwidth
RMS:	root mean square
SOP:	state of polarization
SPE:	Stokes parameter evaluation
WDM:	wavelength division multiplexing

iTeh STANDARD PREVIEW (standards.iteh.ai)

4 General description

PMD refers to the spreading of an optical pulse due to polarization-related anomalies. In optical communication systems, the spreading of a pulse leads to bit errors at the receiver due to inter-symbol interference (ISI) and consequently provides bandwidth limitation.

Each optical pulse is made up of a combination of two orthogonal SOPs called the principal SOPs (PSPs), due to birefringence possibly present in the DUT (see Figure 1). These different polarization components travel at different group velocities and will arrive at the output of the DUT at different times. PMD is related to the difference between the two PSP delays, the DGD $\Delta\tau$.

Figure 1– Effect of PMD phenomenon on transmission of an information bit pulse in a device

4.1 Mode coupling

PMD in passive fibre optic devices is usually deterministic by nature meaning that the phenomenon is predictable and can be reproduced and controlled. However, it is important to understand how the polarization modes can couple together in the device, and in fact they can couple differently. In optical passive fibre optic devices, the mode coupling is typically referred to as negligible or no or negligible (including the cases of polarization maintaining fibres and short lengths of ordinary fibre) as opposed to random or strong mode coupling such as frequently seen in the case of long lengths of fibre. In no or negligible mode coupling, the axis of birefringence in the device is fixed and constant in only one section of birefringence and consequently the DGD is constant as a function of wavelength. In that case the PMD is equal to the DGD.

<https://standards.iteh.ai/catalog/standards/sist/b5e7826e-7f60-4a7b-8c93-429bea460eaa/sist-en-61300-3-32-2007>

There can however be types of passive fibre optic devices exhibiting many sections of fixed birefringence with their axes not necessarily aligned with each other making the DGD randomly varying as a function of wavelength. In that case, the mode coupling is random. Even if the DGD varies, as a function of wavelength and the mode coupling is random, this variation will be constant from one measurement to another and it can still be predicted and the phenomenon is still deterministic. In that case, the PMD is the average value of the DGD spectral distribution (the root mean squared – RMS – value may also be used and is accepted).

There can also be intermediate cases where the passive fibre optic device has few birefringence sections and the DGD can vary less randomly such as a monotonous or sine wave variation as a function of wavelength. The PMD is still the average or RMS value of the DGD distribution and the phenomenon is still deterministic but the mode coupling is neither negligible nor random.

The mode coupling describes how the SOPs are maintained as energy traverses the device. Rather, each device is shown to have a polarization transfer function whereby the SOP at the input is mapped to a different SOP at the output as a function of wavelength. This transfer function is commonly represented using the Jones matrix and will be explained later in the document.

4.2 Narrowband devices

There are other cases of classification that are related to the PMD phenomenon and need to be taken into account. This includes narrowband devices. A narrowband device can have a small DGD distribution while experiencing a wide Fourier time spectrum

with a more complex spectrum in the time domain. Care will also have to be taken when making analysis of DGD in the time domain versus the spectral domain.

4.3 Polarization sensitivity

Another complicating factor is related to the presence of PDL in the DUT. Figure 1 illustrates such a case where at the output of the DUT the bits are not only broadened (in absence of PDL) but also distorted (in presence of PDL). In the case of PDL, the two PSPs are not necessarily orthogonal anymore (not anymore 180° apart on the Poincaré sphere). In this case, this test procedure will be restricted to devices with PDL equal to or less than 1 dB to allow the application of all suggested methods. This condition is typically met inside the passband of typical passive fibre optic devices used in DWDM systems.

PDL or polarization sensitivity may severely impact the correct determination of DUT DGD. PDL may be measured by using IEC 61300-3-2.

However, some possible exclusions or assumptions can be made to reduce the complexity of the situation. For example, a device with high PDL (>10 dB) will generally be used for single-polarization operation. It is therefore possible to argue that for such a device, PDL is the relevant parameter, not PMD.

Therefore with the above justification the scope of this document is restricted to exclude devices that have high (>10 dB) PDL. Such devices include polarizer, polarization sensitive splitters or modulators etc.

iTeh STANDARD PREVIEW

For devices with low PDL (<1 dB), which are the typical cases of DWDM devices, PDL generally presents little problem to the measurements of DGD, but will marginally increase uncertainty. As PDL rises, this uncertainty rises.

[SIST EN 61300-3-32:2007](#)

For devices with higher PDL (e.g. >10 dB), this error is likely to be unacceptable.

[429bea460eaa/sist-en-61300-3-32-2007](#)

4.4 Multiple path interference

Passive fibre optic devices may contain bulk optical elements, fibre-waveguide splices, and fibre-lens interfaces etc. that can give rise to reflections due to optical index mismatch between elements. The effect of these may be to induce multi-path dispersions that are either PMD-related (i.e. the path difference is polarization sensitive) or not (polarization insensitive path differences) [1]¹.

Reflections and multiple delay paths that are not polarization sensitive can be separately removed from DGD. Any kind of polarization-sensitive differential delay, however, will be recorded as DGD.

4.5 Fibre pigtails

Finally, the fibre pigtails will add PMD of their own, which will vary as the leads are bent, coiled or twisted.

¹ Figures in square brackets refer to the bibliography.