INTERNATIONAL STANDARD

First edition 1992-04-15

Corrected and reprinted 1993-05-15

Iron ore fines — Method for presentation of the results of sintering tests

iTeh Sparticules de minerais de fer Méthode de présentation des résultats d'essais de frittage (standards.iteh.ai)

<u>ISO 8263:1992</u> https://standards.iteh.ai/catalog/standards/sist/30bb24a1-b4c9-4125-b955-35c81aa1cb8f/iso-8263-1992

Reference number ISO 8263:1992(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member VIEW bodies casting a vote.

International Standard ISO 8263 was prepared by Technical Committee ISO/TC 102, *Iron ores*, Sub-Committee SC 3, *Physical testing*.

Annex A forms an integral part of this international Standardist/30bb24a1-b4c9-4125-b955-35c81aa1cb8f/iso-8263-1992

© ISO 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Introduction

Sintering tests can be conducted for several different purposes, for example, the assessment of the sintering behaviour of a particular iron ore fines, for production and quality control purposes at a sinter plant, or for research purposes concerned with the sintering process or sintering technology.

From the results of these sintering tests, the sintering behaviour of an iron ore, or iron ore mix, is determined in terms of production rate, fuel consumption rate and sinter quality. The purpose of this International Standard is to establish the terminology and method for presentation of these results, for use when sintering test data is required to be exchanged between separate parties, such as will be the case where a particular iron ore fines has been assessed for commercial reasons, or where research or production results are to be published.

(standards.iteh.ai)

<u>ISO 8263:1992</u> https://standards.iteh.ai/catalog/standards/sist/30bb24a1-b4c9-4125-b955-35c81aa1cb8f/iso-8263-1992

iTeh STANDARD PREVIEW (standards.iteh.ai)

This page intentionally left blank ISO 8263:1992

https://standards.iteh.ai/catalog/standards/sist/30bb24a1-b4c9-4125-b955-35c81aa1cb8f/iso-8263-1992

÷

Iron ore fines — Method for presentation of the results of sintering tests

Scope 1

This International Standard specifies a method for presentation of the results of sintering tests. It is applicable to all iron ore fines that are agglomerated by the sintering process.

2 **Definitions**

For the purposes of this International Standard, the following definitions apply.

2.9 net bed height: The height of the bed of sinter mix above the hearth layer, prior to the application of suction and ignition.

2.10 suction: The air suction measured at the wind box or at the entrance of the main blower of the sintering test apparatus.

2.11 ignition intensity: The heat supplied per unit

of grate area per unit time of ignition.

standards.iteh.ai) ignition temperature: The maximum temperature attained at or immediately above the surface 2.1 ore mix: The blend of iron ores, and other iron bearing raw materials, such as mill scale, basic263:1967 the sinter bed during the ignition process. oxygen steel making slags:dustdaetcitelusedtaing/thedards/sist/30bb24a1-b4c9-4125-b955tests. It does not include return sintered fines 81/iso-82:1319 sintering time: The time from the start of ig-

fluxes, coke or other solid fuel.

2.2 sinter mix: The mix of materials charged to the sintering test apparatus, which includes the ore mix. fluxes, coke or other fuel, and return sintered fines.

2.3 mixing times: The time, in minutes, taken for blending and granulating the various constituents of the sinter mix.

2.4 moisture content of sinter mix: The moisture content, as a percentage by mass, determined by drying the granulated sinter mix, as charged to the sintering test apparatus, at 105 °C \pm 5 °C.

2.5 moisture content for maximum permeability: The moisture content of the granulated sinter mix at which maximum permeability is obtained.

2.6 bulk density of sinter mix: The mass per unit volume of the wet sinter mix as charged.

2.7 hearth layer: A layer of previously made and sized sinter, or other iron ore material, which is placed on the grate before the sinter mix is charged.

2.8 grate area: The area of the grate of the sintering test apparatus.

nition until the exhaust gas temperature reaches a maximum.

2.14 sinter cake: The total mass of sinter produced, including the hearth layer and the material collected from the bottom of the wind box.

2.15 sinter handling treatment: The tumbling and/or shatter treatment given to the sinter cake, obtained in a sinter pot to simulate the effects of handling and transportation in a sinter plant.

2.16 return sintered fines: The undersize fines separated from the sinter cake by sieving after the handling treatment.

2.17 sinter product: The sinter acceptable size for charging to the blast furnace.

2.18 productivity: The mass of sinter product, produced per unit grate area per unit of time (see 3.1.1).

2.19 fuel consumption: The dry mass(es) of solid fuel(s) consumed per unit mass of sinter product after deducting the hearth layer (see 3.1.2).

2.20 yield: The proportion (percentage) of sinter product in relation to the sinter cake, excluding the hearth layer (see 3.1.3).

2.21 return sintered fines balance: The ratio of the mass of return sintered fines charged to the mass of undersize sintered fines produced (see 3.1.4).

3 Sintering tests

For reference, an example of sintering test equipment is illustrated in figure 1, while figure 2 gives a flow-sheet of a typical sinter test procedure.

The International Standards covering test methods for determining the chemical analyses, sieving analyses, and sinter quality indices are listed in annex A. If any of these International Standards are not available, the respective national or regional standard should be used.

3.1 Calculation of results

3.1.1 Productivity

where

- is the total mass, in kilograms, of sinter m_1 of acceptable size produced (including the hearth layer);
- is the mass, in kilograms, of the hearth m_2 layer;
- is the dry mass of solid fuel in the sinter m_3 mix consumed.

3.1.3 Yield

The yield Y, as a percentage by mass, is calculated from the equation

$$Y = \frac{m_1 - m_2}{m_4 - m_2} \times 100$$

where

- is the total mass, in kilograms, of sinter m_1 of acceptable size produced;
- is the mass, in kilograms, of the hearth m_{2} layer;

The productivity P, in tonnes of sinter per square ARDmPRisthe total mass, in kilograms, of sinter metre per hour, is calculated from the equation cake.

$$P = \frac{m_1 - m_2}{1\ 000} \times \frac{1}{A} \times \frac{60}{t}$$

$$\frac{1}{1000} \times \frac{1}{A} \times \frac{1}{A} \times \frac{60}{t}$$

$$\frac{1}{1000} \times \frac{1}{A} \times \frac{1$$

where

calculated from the equation

- is the total mass, in kilograms, of sinter m_1 of acceptable size produced (including the hearth layer);
- is the mass, in kilograms, of the hearth m_2 layer;
- A is the area of grate, in square metres;
- is the sintering time, in minutes. t

Productivity may also be reported in terms of NOTE 1 tonnes of iron contained in sinter of acceptable size per square metre per hour, to reflect changes in the grade of the sinter product.

The productivity P_{Fe} , in tonnes of iron in sinter per square metre per hour, is calculated from the equation

$$P_{\rm Fe} = \frac{P \times w_{\rm Fe}}{100}$$

where w_{Fe} is the percentage iron content in the sinter.

3.1.2 Fuel consumption

The fuel consumption C is calculated from the equation

$$C = \frac{m_3}{m_1 - m_2} \times 1\ 000$$

35c81aa1cb8f/isc

$$B = \frac{m_5}{m_6}$$

where

- is the mass of return sintered fines m_5 charged (input);
- is the mass of undersize sintered fines m_6 produced (output).

In a sinter pot test, this is normally maintained NOTE 2 within limits of 1 ± 0.05 , for results to be representative of actual practice.

The percentage of return sintered fines F may also be recorded, and is calculated from the equation

$$F = \frac{m_4 - m_1}{m_4 - m_2} \times 100$$

Method for reporting results 4

The results of sintering tests shall be reported according to schedules 1 to 6 as follows.

Schedule 1: Chemical analyses (dry basis) and size distribution of the various ores included in the ore mix.

Table 1 lists the chemical analysis and size distribution of each iron ore contained in the ore mix used in the tests.

A separate column is used for each ore, or iron bearing material, included in the ore mix. It is not necessary to actually name each ore source which can be referred to as ore A, B, C, etc.

Schedule 2: Composition of the ore mix.

Table 2 shows the percentage of each iron ore, or iron bearing material, contained in the ore mix for each test. These percentages are calculated on a dry basis.

Schedule 3: Chemical analyses (dry basis) and size distributions of fluxes, fuels and return sintered fines.

Table 3 is similar to table 1, but lists the chemical analyses and size distributions of all the other materials included in the sinter mix, such as the coke or alternative fuels used, each of the fluxes used, and the return sintered fines. The coke or fuel analyses give the percentage of ash as well as fixed carbon and volatile matter.

If a hearth layer other than sized sinter is utilized, then the type and composition of the material used should be listed in table 3.

Schedule 4: Composition of the sinter mix.

Table 4 shows the percentage of each constituent of the sinter mix, including the ore mix, fluxes, coke or other fuel, and the return sintered fines.

NOTE 3 From tables 1 and 2, the overall weighted composition of the ore mix can be calculated and used as the basis for calculation of flux quantities.

Schedule 5: Sintering test results.

Table 5 gives the conditions under which the sintering tests were done and the results of the tests.

Schedule 6: Sinter product quality data.

In table 6 the results of chemical and physical tests undertaken on the sinter product are recorded.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 8263:1992</u> https://standards.iteh.ai/catalog/standards/sist/30bb24a1-b4c9-4125-b955-35c81aa1cb8f/iso-8263-1992

	Ore A	Ore B	Ore C	Ore D	Mill scale and/or other surface coatings	Test ore
	%	%	%	%	%	%
Chemical analysis						
Fe (total)						
FeO						
SiO ₂						
Al ₂ O ₃						
CaO						
MgO						
MnO						
S						
Ρ						
Na ₂ O						
K₂O						
С	iTeh ST	ANDA	KD PKI	UVIEW		
TiO ₂		andard	s.iteh.a	•		
Loss on ignition		anuaru	3.11 UII. A	- J		
Combined water		<u>ISO 826</u>	8.1992			
Moisture content	https://standards.iteh.a	i/catalog/standar 35c81aa1cb8f/i	ds/sist/30bb24a	-b4c9-4125-b9	55-	
Size distribution						
+ 8,0 mm						
- 8,0 mm + 5,6 mm						
- 5,6 mm + 4,0 mm						
— 4,0 mm + 2,0 mm						
– 2,0 mm + 1,0 mm						
— 1,0 mm + 500 μm						
— 500 μm + 250 μm						
— 250 μm ⁺ + 125 μm						
— 125 μm 🛛 + 63 μm						
— 63 μm						
Method of size analysis:						
wet/dry sieving						

Table 1 — Chemical analyses (dry basis), moisture content and size distributions of the various ores included in the ore mix

Constituents of ore mix	Test No. 1	Test No. 2	Test No. 3	Test No. 4	Test No. 5	Test No. 6
Dre A						
Dre B						
Ore C						
Dre D iTe	h STAI	DARD	PREV	FW		
		dards.it	1			
Mill scale and/or other suffacetan	dards.iteh.ai/cata 35c8	ISO 8263:1992 løg/standards/sist 1aa1cb8f/iso-826	30bb24a1-b4c9	-4125-b955-		
•						
Test ore						

Table 2 — Composition of the ore mix

	O a las a se	Coke or Flux					
	Coke or other fuel	Limestone	Dolomite	Siliceous	Other	sintered fines	
	%	%	%	%	%	%	
Chemical analysis			,				
Fe (total)							
FeO							
SiO ₂							
Al ₂ O ₃							
CaO							
MgO							
MnO							
S							
Р							
Na₂O							
Κ₂Ο							
С							
TiO ₂	iTeh ST		RD PRI	TVIEW			
C (fixed)							
Ash	(\$1	andard	s.iteh.a	i)			
Volatile Matter (VM)				-			
Combined water		<u>ISO 826</u>					
Moisture content	https://standards.iteh.a	35c81aa1cb8f/i		I-b4c9-4125-b9	55-		
Size distribution							
+ 8,0 mm							
- 8,0 mm + 5,6 mm							
-5,6 mm + 4,0 mm							
-4,0 mm + 2,0 mm							
- 2,0 mm + 1,0 mm							
– 1,0 mm + 500 μm							
– 500 μm + 250 μm							
– 250 μm 🛛 + 125 μm							
— 125 μm 🛛 + 63 μm							
— 63 μm							
Method of size analysis:							
wet/dry sieving							
		1	<u> </u>		<u> </u>		

Table 3 — Chemical analyses (dry basis), moisture content and size distributions of fluxes, fuels and return sintered fines

			Valu	es in percentage	e by mass [% (/	n/m)] (dry basis
Constituents	of sinter feed	Test No. 1	Test No. 2	Test No. 3	Test No. 4	Test No. 5
Ore mix						
Return sintered fines						
Return sintered fines						
						P
Siliceous material						
Limestone	Tab CTAI		DDEX			
	iTeh STA					
	(star	idards.i	ten.ai)			
Dolomite		<u>ISO 8263:19</u>	<u>92</u>			
Dolomite	https://standards.iteh.ai/cata 35c8	alog/standards/sis 1aa1cb8f/iso-82	t/30bb24a1-b40 63-1992	9-4125-b955-		
Other fluxes (if any)						
Coke						
Other first (frame)						
Other fuel (if any)						
						L

Table 4 — Composition of the sinter mix

7