

Edition 1.0 2008-03

INTERNATIONAL STANDARD

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2008 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch

Email: inmail@iec.cl Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Rease make sure that you have the latest edition, a corrigenda or an amendment might have been published.

■ Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.

■ IEC Just Published: www.iec.ch/online news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.

■ Electropedia: <u>www.electropedia.org</u>

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

Customer Service Centre: https://www.ies.ch/webstore/custserv

If you wish to give us your feedback on this publication of need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00

Edition 1.0 2008-03

INTERNATIONAL **STANDARD**

Metallic communication cable test methods -

Part 4-9: Electromagnetic compatibility (EMC) - Coupling attenuation of screened balanced cables, triaxial method

INTERNATIONAL **ELECTROTECHNICAL** COMMISSION

PRICE CODE

ICS 33.100; 33.120.20 ISBN 2-8318-9661-4

CONTENTS

F	OREWORD	3	
1	Scope	5	
2	Normative references		
3	Terms, definitions and symbols		
4	Principle of the measuring method		
5	Theoretical background		
	5.1 Unbalanced attenuation a _u		
	5.2 Screening attenuation a _s	8	
	5.3 Coupling attenuation a _c	9	
6	Measurement	9	
	6.1 Equipment	9	
	6.2 Balun requirements	10	
	0.5 Sallible Dieparation	11	
	6.4 Procedure	12	
_	6.5 Measurement Precautions	12	
7	6.5 Measurement Precautions Expression of results Requirements	12	
8	Requirements	12	
9	Plots of coupling attenuation versus frequency-typical results	13	
Bi	bliographybliography	15	
	Of Culter Meview		
Fi	gure 1 – Principle test set up	7	
Fi	Figure 2 – Set-up to measure the coupling attenuation		
Fi	gure 3 – Termination of the cable under test	11	
	gure 4 – Twinax 105 log		
	gure 5 – Twinax 105 linear		
	gure 6 – FTR log		
	gure 7 - FTP linear		
Ta	able 1 – Balun performance characteristics (1 MHz to 1 GHz)	11	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-9: Electromagnetic compatibility (EMC) – Coupling attenuation of screened balanced cables, triaxial method

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62153-4-9 has been prepared by IEC technical committee 46: Cables, wires, waveguides, R.F. connectors, R.F. and microwave passive components and accessories.

This standard cancels and replaces IEC/PAS 62338 published in 2002.

The text of this standard is based on the following documents:

CDV	Report on voting
46/190/CDV	46/222/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62153 series can be found, under the general title *Metallic communication cable test methods*, on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed;
- withdrawn;
- · replaced by a revised edition; or
- amended.

METALLIC COMMUNICATION CABLE TEST METHODS -

Part 4-9: Electromagnetic compatibility (EMC) – Coupling attenuation of screened balanced cables, triaxial method

1 Scope

This part of IEC 62153 applies to metallic communication cables. It specifies a test method for determining the coupling attenuation $a_{\mathbb{C}}$ of screened balanced cables. Due to the concentric outer tube, measurements are independent of irregularities on the circumserence and external electromagnetic fields.

A wide dynamic and frequency range can be applied to test even super screened cables with normal instrumentation from low frequencies up to the limit of defined transversal waves in the outer circuit at approximately 4 GHz. However, the upper frequency is limited by the properties of the baluns.

The procedure to measure the coupling attenuation a_C is based on the procedure to measure the screening attenuation a_S according to IEC 62 53-4-5.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-726, International Electrotechnical Vocabulary (IEV) – Chapter 726: Transmission lines and wave guides

IEC/TR 62153-4-1. Metallic communication cable test methods – Part 4-1: Electromagnetic compatibility (EMC) – Introduction to electromagnetic (EMC) screening measurements

IEC 62153-4-5. Metallic communication cables test methods — Part 4-5: Electromagnetic compatibility EMC — Coupling or screening attenuation — Absorbing clamp method

3 Terms, definitions and symbols

For the purposes of this document the terms and definitions given in IEC 60050-726, IEC 62153-4-1 and IEC 62153-4-5, as well as the following symbols apply.

- a_s is the screening attenuation which is comparable to the results of the absorbing clamp method in dB;
- a_c is the coupling attenuation related to the radiating impedance of 150 Ω in dB;
- a_{11} is the unbalanced attenuation;
- $a_{\mathrm{m,min}}$ is the attenuation recorded as minimum envelope curve of the measured values in dB;
- a_z is the additional attenuation of an eventually inserted adapter, if not otherwise eliminated e.g. by the calibration, in dB;
- C_{T} is the through capacitance of the outer conductor in F/m;
- c_0 is the vacuum velocity in m/s;
- dx is the differential length operator of integraton;

 λ_0 is the vacuum wavelength in m;

 ε_{r1} is the relative dielectric permittivity of the cable under test;

 ε_{r2} is the relative dielectric permittivity of the secondary circuit;

 $\varepsilon_{r2,n}$ is a normalised value of the relative dielectric permittivity of the environment of the cable;

f is the frequency in Hz;

j is the imaginary operator (square root of minus one);

L is the transmission line parameter-inductance;

l is the effective coupling length in m;

 φ is a phase factor in the ratio of the secondary to primary circuit end voltages (U₁/U₂);

 P_1 is the feeding power of the primary circuit in W;

 P_2 is the measured power received on the input impedance;

R of the receiver in the secondary circuit in W;

 $P_{\rm r}$ is the radiated power in the environment of the cable, which is comparable to $P_{\rm 2,n}$ + $P_{\rm 2,f}$ of the absorbing clamp method in W;

P_{r.max}is the periodic maximum values of the common mode radiated power in W;

Ps is the radiated power in the normalised environment of the cable under test,

(
$$Z_s$$
 = 150 Ω and $|\Delta v / v_1|$ = 10 $\%$) in W,

$$\varphi_1 = 2\pi \times \sqrt{\varepsilon_{r2}} \times \lambda_0$$
 (1)

$$\varphi_2 = 2\pi \times \sqrt{\varepsilon_{r1} + \varepsilon_{r2}} \times \sqrt{\lambda_0} \tag{2}$$

$$\varphi_3 = \varphi_2 + \varphi_1 = 4 \, \text{Tr} \times \sqrt{\varepsilon_{12}} \times I / \lambda_0 \tag{3}$$

R is the input impedance of the feceiver in Ω ;

 R_1 is the differential mode termination, Q; 1>3-4-9:200

S is the summing function;

T is the coupling transfer function;

 U_1 is the input voltage of the primary circuit formed by the cable in V;

 U_2 is the output voltage of the secondary circuit in V;

 Ω is the radian frequency;

 Z_1 is the (differential mode) characteristic impedance of the cable under test (primary circuit) in Ω ;

 Z_2 is the characteristic impedance of the secondary circuit in Ω ;

under test (150 Ω secondary circuit impedance Z_2) in Ω ;

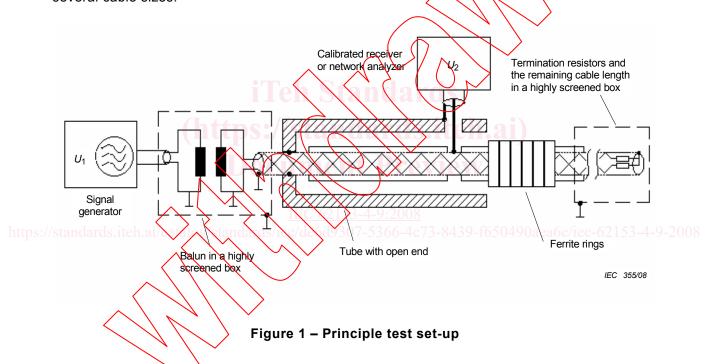
 Z_{com} is the common mode (unbalanced);

Z_{diff} is the nominal characteristic differential mode impedance of the differential mode (balanced);

 Z_F is the capacitive coupling impedance of the cable under test in Ω/m ,

 $Z_{\rm s}$ is the normalised value of the characteristic impedance of the environment of the cable

 Z_T is the transfer impedance of the cable under test in Ω/m ;


$$Z_{\mathsf{F}} = Z_1 \times Z_2 \times j \times 2 \times \pi \times f \times C_{\mathsf{T}} \tag{4}$$

4 Principle of the measuring method

The test set up (see Figure 1) is a triaxial system consisting of an outer solid metallic tube in which are concentrically positioned the first several meters of a longer length of the cable to be tested. The length of the cable under test that extends past the tube is placed in a highly shielded box and terminated with common mode and differential mode terminations.

The disturbing circuit (the inner or primary circuit) consists of the test cable which is fed by a generator and is impedance-matched at the near and far ends. The disturbed circuit (the outer or secondary circuit) is formed by the solid metallic tube and the short section of the cable under test covered by the tube. The disturbed circuit is terminated at the near end in a short circuit and is terminated at the far end with a calibrated receiver or network analyzer.

The voltage peaks at the far end of the secondary circuit are measured with a calibrated receiver or network analyzer. For this measurement a matched receiver is not necessary. These voltage peaks are not dependant on the input impedance of the receiver, provided that it is lower than the characteristic impedance of the secondary circuit. However, it is advantageous to have a low mismatch, for example by selecting a range of tube drameters for several cable sizes.

5 Theoretical background

5.1 Unbalanced attenuation a,,

Screened balanced pairs may be operated in the differential mode (balanced) or the common mode (unbalanced). In the differential mode, one conductor carries the current +I and the other conductor carries the current -I; the screen is without current. In the common mode, both conductors of the pair carry half of the current +I/2; and the screen is the return path with the current -I.

Under ideal conditions with ideal cables, both modes are independent of one another. Actually both modes influence each other. Differences in the diameter of the core insulation, unequal twisting and different distances of the pair. The unsymmetry is caused by the capacitive unbalance to earth e (transverse - unsymmetry) and the difference of the inductance and resistance between the two wires r (longitudinal - unsymmetry).

$$e = C_{10} - C_{20} \tag{5}$$

$$r = (R_2 + j\omega \times L_2) - (R_1 + j\omega \times L_1)$$
(6)

The coupling transfer functions between the two modes at the near and far ends is then expressed by:

$$T_{\text{u,n}} = \frac{1}{4} \times \frac{1}{\sqrt{Z_{\text{diff}} \times Z_{\text{com}}}} \times \int_{0}^{1} (j\omega \times e(x) \times Z_{\text{diff}} \times Z_{\text{com}} + r(x)) \times e^{-(\gamma_{\text{diff}} + \gamma_{\text{com}}) \times x} dx$$
 (7)

$$T_{\text{u,f}} = \frac{1}{4} \times \frac{1}{\sqrt{Z_{\text{diff}} \times Z_{\text{com}}}} \times \int_{0}^{l} (j\omega \times e(x) \times Z_{\text{diff}} \times Z_{\text{com}} - r(x)) \times e^{(\gamma_{\text{diff}} - \gamma_{\text{com}}) \times (l-x)} dx$$
 (8)

 Z_{diff} and Z_{com} are in principle the same coupling transfer functions compared to the coupling through the screen. The integral may be solved if the distribution of the unsymmetry functions along the cable length is known.

For a constant unsymmetry along the cable length, the coupling function is expressed by (similar to the form of the coupling function for cable screens):

$$T_{\text{uf}}^{\text{n}} = (j\omega \times e \times Z_{\text{diff}} \times Z_{\text{com}} \pm r) \times \sqrt{Z_{\text{diff}} \times Z_{\text{com}}} \times \frac{1}{4} \times S_{\text{f}}^{\text{n}}$$
(9)

If the cable is electrically long, there is the same phenomenon as for the coupling through the screen. Depending on the velocity difference between the differential and the common mode circuit, the envelope of the transfer function approaches a constant value which is frequency and length independent. However, if the velocity difference is zero, then the transfer function at the far end increases by 20 dB per decade over the whole frequency range ($S_f = 1$). In practice, there are small systematic couplings as well as statistical couplings. Thus $T_{u,n}$ increases by approximately 10 dB per decade and $T_{u,f}$ by less then 20 dB per decade.

5.2 Screening attenuation a

The screening attenuation as is given by

$$a_{s} = -10 \times \log_{10} \left(\text{Env} \left| \frac{P_{r,\text{max}}}{P_{1}} \right| \right)$$
 (10)

At high frequencies and when the cable under test is electrically long:

$$\sqrt{\frac{P_{2\text{max}}}{P_{1}}} \approx \frac{c_{0}}{\omega\sqrt{Z_{1} \times Z_{2}}} \times \left| \frac{Z_{T} - Z_{F}}{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}} + \frac{Z_{T} + Z_{F}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}} \right|$$
(11)