# International Standard 

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION•ME ЖДУHAPOДНAЯ OPTAHИЗALИЯ ПО CTAHДAPTИЗALИИ•ORGANISATION INTERNATIONALE DE NORMALISATION

# Information processing - Data interchange on 130 mm ( 5.25 in ) flexible disk cartridges using modified frequency modulation recording at 7958 ftprad, $3,8 \mathrm{tpmm}(96 \mathrm{tpi})$, on both sides - <br> <br> Part 2: Track format ANDARID PREVIEW 

 <br> <br> Part 2: Track format ANDARID PREVIEW}
(standardls.iteh .ai)
Traitement de l'information - Échange de données sur cartouches à disquette de $130 \mathrm{~mm}(5,25$ in) utilisant un enregistrement à modulation de fréquence modifiée à 7958 ftprad, $3,8 \mathrm{tpmm}(96 \mathrm{tpi})$, sur les deux faces - Partie 2: Schéma de piste $A$

First edition - 1986-04-15 standards.iteh.ai/catalog/standards/sis/038e2bee-04de-497f-990a-

## Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least $75 \%$ approval by the member bodies voting. T TNDARD PREVNW

International Standard ISO 8378/2 was prepared by (Technical Committee ISO/TC 97,
Information processing systems. Information processing systems.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies itse-04de-497f-990alatest edition, unless otherwise stated.
c3da5ee4b77f/iso-8378-2-1986
Contents ..... Page
0 Introduction ..... 1
1 Scope and field of application ..... 1
2 Conformance ..... 1
3 References ..... 1
4 Track format ..... 1
aTeh ST A. Genear requienent ..... 1
4.2 Track layout after the first formatting for track 00 , side 0 ..... 3

4.3 Track layout after the first formatting for all tracks other than track 00, side 0 ..... 5
https://standards.iteh ai/4.4 Tracklayout of a recorded flexible disk for data interchange ..... 6
c3da5ee4b77f/iso-8378-2-1986
Annexes
A EDC implementation ..... 9
B Procedure and equipment for measuring flux transition spacing ..... 10
C Data separators for decoding MFM recording ..... 13

# iTeh STANDARD PREVIEW (Strispage hidentionalylyef biahk 

ISO 8378-2:1986<br>https://standards.iteh.ai/catalog/standards/sist/038e2bee-04de-497f-990a-c3da5ee4b77fiso-8378-2-1986

# Information processing - Data interchange on 130 mm ( 5.25 in ) flexible disk cartridges using modified frequency modulation recording at 7958 ftprad, 3,8 tpmm ( 96 tpi), on both sides Part 2: Track format A 

## 0 Introduction

ISO 8378 specifies the characteristics of 130 mm ( 5.25 in ) flexible disk cartridges recorded at $7958 \mathrm{ftprad}, 3,8 \mathrm{tpmm}$ ( 96 tpi ), on both sides using modified frequency modulation (MFM) recording.
-rreh STC AT A
ISO 8378/1 specifies the dimensional, physical and magnetic characteristics of the cartridge so as to provide physical inter changeability between data processing systems.

ISO 8378/3 specifies an alternative track format for data interchange.

Together with the labelling scheme specified in ISO 7665, ISO 8378/1 and ISO 8378/2 provide for full data interchange between data processing systems.

## 1 Scope and field of application

This part of ISO 8378 specifies the quality of recorded signals, the track layout, and a track format to be used on 130 mm ( 5.25 in ) flexible disk cartridges intended for data interchange between data processing systems.

NOTE - Numeric values in the SI and/or Imperial measurement system in this part of ISO 8378 may have been rounded off and therefore are consistent with, but not exactly equal to, each other. Either system may be used, but the two should be neither intermixed nor reconverted. The original design of this part of ISO 8378 was made using SI units.

## 2 Conformance

A flexible disk cartridge shall be in conformance with ISO 8378 when it meets all the requirements either of parts 1 and 2 or of parts 1 and 3 of ISO 8378.

## 3 References

ISO 646, Information processing - ISO 7-bit coded character set for information interchange.

ISO 2022, Information processing - ISO 7-bit and 8-bit coded character sets - Code extension techniques.

ISO 4873, Information processing - ISO 8-bit code for information interchange - Structure and rules for implementation.

ISO 7665 , Information processing - File structure and labelling of flexible disk cartridges for information interchange.

ISO 8378, Information processing - Data interchange on $130 \mathrm{~mm}(5.25 \mathrm{in})$ flexible disk cartridges using modified frequency modulation cecording at $7958 \mathrm{ftprad}, 3,8 \mathrm{tpmm}$ ( 96 tpi) on both sides -

Part 1: Dimensional, physical and magnetic characteristics.
Part 3: Track format $B$.

## 4 Track format

### 4.1 General requirements

### 4.1.1 Mode of recording

### 4.1.1.1 Track 00 , side 0

The mode of recording shall be two-frequency where the start of every bit cell is a clock flux transition. A ONE is represented by a data flux transition between two clock flux transitions. Exceptions to this are defined in 4.1.12.

### 4.1.1.2 All tracks other than track 00 , side 0

The mode of recording shall be Modified Frequency Modulation (MFM) for which the conditions are
a) a flux transition shall be written at the centre of each bit cell containing a ONE;
b) a flux transition shall be written at each cell boundary between consecutive bit cells containing ZEROs.

Exceptions to this are defined in 4.1.12.

### 4.1.2 Track location tolerance of the recorded flexible disk cartridge

The centrelines of the recorded tracks shall be within $\pm 0,0425 \mathrm{~mm}(0.0017 \mathrm{in})$ of the nominal positions, over the range of operating environment specified in ISO 8378/1.

### 4.1.3 Recording offset angle

At the instant of writing or reading a magnetic transition, the transition shall have an angle of $0^{\circ} \pm 18^{\prime}$ with the radius.

NOTE - As tracks may be written and overwritten at extremes of the tolerances given in 4.1.2 and 4.1.3, a band of old information may be left at one edge of the newly written data and would constitute unwanted noise when reading. It is, therefore, necessary to trim the edges of the tracks by erasure after writing.

### 4.1.4 Density of recording

4.1.4.1 The nominal density of recording shall be 7958 ftprad. The nominal bit cell length for track 00, side 0 is $251 \mu \mathrm{rad}$, and for all the other tracks it is 125,7 radi' Th STANDARD PREVIEW
(standar
4.1.4.2 The long-term average bit cell length shall be the average bit cell length measured over a sector. It shall be within $\pm 3,5 \%$ of the nominal bit cell length.
4.1.4.3 The short-term average bit cell length, referred to a particular bit cell, shall be the average of the lengths of the preceding eight bit cells. It shall be within $\pm 8 \%$ of the longterm average bit cell length.

### 4.1.5 Flux transition spacing

The instantaneous spacing between flux transitions may be influenced by the reading and writing process, the bit sequence recorded (pulse crowding effects), and other factors. The locations of the transitions are defined as the locations of the peaks in the signal when reading. Tests should be carried out using a peak-sensing amplifier.
4.1.5.2.1 The spacing between the flux transitions in a
hitps $/ /$ standards.iteh.ai/catalog/stand 4.15.2.23 8 The spacing between the flux transition for a ONE
2aiccatalog/stand 4.1s.2.2.2 3 sthe spacing between the flux transition for a ONE
c3da5ee4b77fiand that between two ZEROs preceding or following it shall be
4.1.5.1 Flux transition spacing for track 00 , side 0 (see figure 1).
4.1.5.1.1 The spacing between two clock flux transitions surrounding a data flux transition or between two data flux transitions surrounding a clock flux transition shall be between $90 \%$ and $140 \%$ of the nominal bit cell length.
4.1.5.1.2 The spacing between two clock flux transitions not surrounding a data flux transition or between two data flux transitions surrounding a missing clock flux transition shall be between $60 \%$ and $110 \%$ of the nominal bit cell length.
4.1.5.1.3 The spacing between a data flux transition and the preceding clock flux transition (when not missing) or between a clock flux transition and the preceding data flux transition (when not missing) shall be between $45 \%$ and $70 \%$ of the nominal bit cell length.
4.1.5.2 Flux transition spacing for all tracks other than track 00 , side 0 (see figure 2). eguence of ONEs shall be between $80 \%$ and $120 \%$ of the short-term average bit cell length.

## SO 8378-2:1986

 between $130 \%$ and $165 \%$ of the short-term average bit cell length.4.1.5.2.3 The spacing between the two ONE flux transitions surrounding a ZERO bit cell shall lie between $185 \%$ and $225 \%$ of the short-term average bit cell length.

### 4.1.6 Average signal amplitude

For each side the average signal amplitude on any nondefective track (see ISO 8378/1) of the interchanged flexible disk cartridge shall be less than $160 \%$ of SRA $_{1 f}$ and more than $40 \%$ of $\operatorname{SRA}_{2 f}$.


Figure 1


Figure 2

### 4.1.7 Byte

A byte is a group of eight bit-positions, identified B 1 to B 8 , with B8 the most significant and recorded first.

The bit in each position is a ZERO or a ONE.

### 4.1.8 Sector

All tracks are divided into 16 sectors.
(4E) for $(\mathrm{B} 8$ to B 1$)=01001110$
$(\mathrm{FE})$ for $(\mathrm{B} 8$ to B 1$)=11111110$
$(\mathrm{FB})$ for $(\mathrm{B} 8$ to B 1$)=11111011$
$(\mathrm{FB})$ for $(\mathrm{B} 8$ to B 1$)=11111000$
$(\mathrm{A} 1)^{*}$ for $(\mathrm{B} 8$ to B 1$)=10100001$
where the boundary transition between B3 and B4 is missing.

### 4.1.9 Cylinder

## iTelh STANDARD4.1.13 Error detection characters (EDC)

A pair of tracks, one on each side, having the same track number.

The two EDC-bytes are hardware generated by shifting serially the relevant bits, specified later for each part of the track through a 16 -bit shift register described by

### 4.1.10 Cylinder number

## 

The cylinder number shall be a two-digit number identical/witho-8378 (See also annex A.)
the track number of the tracks of the cylinder.

### 4.1.11 Data capacity of a track

The data capacity of track 00 , side 0 shall be 2048 bytes. The data capacity of all tracks other than track 00 , side 0 shall be 4096 bytes.

### 4.1.12 Hexadecimal notation.

Hexadecimal notation shall be used hereafter to denote the following bytes:
$(00)$ for $(\mathrm{B} 8$ to B 1$)=00000000$
(01) for $(\mathrm{B} 8$ to B 1$)=00000001$
(FF) for $(\mathrm{B} 8$ to B 1$)=11111111$
$(\mathrm{FE})^{*}$ for $(\mathrm{B} 8$ to B 1$)=11111110$
where the clock transitions of $\mathrm{B} 6, \mathrm{~B} 5$ and B 4 are missing
$(F B)^{*}$ for $(B 8$ to $B 1)=11111011$
where the clock transitions of $B 6, B 5$ and $B 4$ are missing
$(F 8)^{*}$ for $(B 8$ to $B 1)=11111000$
where the clock transitions of $\mathrm{B} 6, \mathrm{~B} 5$ and B 4 are missing

### 4.2 Track layout after the first formatting for track 00 , side 0

After the first formatting, there shall be 16 usable sectors on the track. The layout of the track shall be as shown in figure 3.

During formatting the rotational speed of the disk, averaged index to index, shall be $300 \pm 6 \mathrm{r} / \mathrm{min}$.

### 4.2.1 Index gap

At nominal density, this field shall comprise 16 (FF)-bytes. Writing the index gap is started when the index hole is detected. Any of the first 8 bytes may be ill-defined due to subsequent overwriting.

### 4.2.2 Sector identifier

This field shall be as given in table 1.
Table 1

| Sector identifier |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Identifier mark |  | Address identifier |  |  |  |  |
|  |  | Track | ddress | S |  | EDC |
| 6 bytes (00) | 1 byte (FE). | $\begin{gathered} \text { C } \\ 1 \text { byte } \\ (00) \end{gathered}$ | Side 1 byte (00) | 1 byte | 1 byte (00) | 2 bytes |



Figure 3

### 4.2.2.1 Identifier mark

This field shall comprise 7 bytes:
6 (00)-bytes
1 (FE)*-byte

### 4.2.2.2 Address identifier

This field shall comprise 6 bytes.

### 4.2.4 Data block

This field shall be as given in table 2.

## Table 2

| Data block |  |  |  |
| :---: | :---: | :---: | :---: |
| Data mark |  | Data field | EDC |
| 6 bytes <br> $(00)$ | 1 byte <br> $(\mathrm{FB})^{*}$ | 128 bytes | 2 bytes |

4.2.2.2.1 Track address

This field shall comprise two bytes:

## iTeh STANIDAR.D. PREVIIEW (standardnsititas thaid popise

a) Cylinder address (C)

This field shall specify in binary notation the cylinder 8378 -26 ( 000 -bytes address. It shall be (00) for all sectors. address. It shall be (00) for all sectors. c3da5ee4b77fiso-83(f)
b) Side number (Side)

This field shall specify the side of the disk. It shall be (00) for all sectors.

### 4.2.2.2.2 Sector number (S)

The 3rd byte shall specify in binary notation the sector number from 01 for the 1st sector to 16 for the last sector.

The 16 sectors shall be recorded in the natural order:

$$
1,2,3 \ldots 15,16
$$

4.2.2.2.3 4th byte of the sector address

The 4th byte shall always be a (00)-byte.

### 4.2.2.2.4 EDC

These two bytes shall be generated as defined in 4.1.13 using the bytes of the sector identifier starting with the (FE)*-byte (see 4.2.2.1) of the identifier mark and ending with the 4th byte (see 4.2.2.2.3) of the address identifier.

### 4.2.3 Identifier gap

This field shall comprise 11 initially recorded (FF)-bytes.

### 4.2.4.2 Data field

This field shall comprise 128 bytes. No requirements are implied beyond the correct EDC for the content of this field (see also 4.4.4.2.4.2).

### 4.2.4.3 EDC

These two bytes shall be generated as defined in 4.1.13 using the bytes of the data block starting with the 7th byte of the data mark (see 4.2.4.1) and ending with the last byte of the data field (see 4.2.4.2).

### 4.2.5 Data block gap

This field shall comprise 27 initially recorded (FF)-bytes. It is recorded after each data block and it precedes the following sector identifier. After the last data block, it precedes the track gap.

### 4.2.6 Track gap

This field shall follow the data block gap of the 16th sector. (FF)-bytes are written until the index hole is detected, unless it has been detected during writing of the last data block gap, in which case there shall be no track gap.

### 4.3 Track layout after the first formatting for all tracks other than track 00 , side 0

After the first formatting, there shall be 16 usable sectors on each track. The layout of each track shall be as shown in figure 4.

During formatting the rotational speed of the disk, averaged index to index, shall be $300 \pm 6 \mathrm{r} / \mathrm{min}$.

### 4.3.1 Index gap

At nominal density, this field shall comprise 32 ( 4 E )-bytes. Writing the index gap is started when the index hole is detected. Any of the first 16 bytes may be ill-defined due to subsequent overwriting.

### 4.3.2.2.1 Track address

This field shall comprise 2 bytes:
a) Cylinder address (C)

This field shall specify in binary notation the cylinder address from 00 for the outermost cylinder to 77 for the innermost cylinder.
b) Side number (Side)

This field shall specify the side of the disk. On side 0 , it shall be (00) on all tracks. On side 1, it shall be (01) on all tracks.

### 4.3.2.2.2 Sector number (S)

The 3rd byte shall specify in binary notation the sector number from 01 for the 1st sector to 16 for the last sector.

The sectors shall be recorded in the natural order:
1, 2, $3 \ldots 15,16$
4.3.2.2.3 4th byte
4.3.2.1 Identifier mark iTeh STANDARD PR R ATh byte shall always be a (01)-byte.

This field shall comprise 16 bytes:
(standards.iteh aii)
12 (00)-bytes
3 (A1)*-bytes 150 8378-2:19 These two bytes shall be generated as defined in 4.1.13 using 1 (FE)-byte c3da5ee4b77ffiso-8378At)*Gbyte (see 4.3.2.1) of the identifier mark and ending with the 4th byte (see 4.3.2.2.3) of the address identifier.

### 4.3.2.2 Address identifier

This field shall comprise 6 bytes.

### 4.3.3 Identifier gap

This field shall comprise 22 initially recorded (4E)-bytes.

Table 3

| Sector identifier |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Identifier mark |  |  | Address identifier |  |  |  |  |
|  |  |  | Trac | ress | S |  | EDC |
| 12 bytes (00) | 3 bytes <br> (A1)* | 1 byte (FE) | C <br> 1 byte | Side 1 byte (00) or (01) | 1 byte | 1 byte (01) | 2 bytes |



Figure 4

### 4.3.4 Data block

This field shall be as given in table 4.

Table 4

| Data block |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Data mark |  |  |  | Data field |
| EDC |  |  |  |  |
| 12 bytes <br> $(00)$ | 3 bytes <br> $(\mathrm{A} 1)^{*}$ | 1 byte <br> $(\mathrm{FB})$ | 256 bytes | 2 bytes |

### 4.3.4.1 Data mark

This field shall comprise

12 (00)-bytes
$3(\mathrm{~A} 1)^{*}$-bytes
1 (FB)-byte

### 4.3.4.2 Data field

This field shall comprise 256 bytes. No requirements are implied beyond the correct EDC for the content of this field (see also A A bad cylinder is a gylinder which has both tracks formatted 4.4.4.2.4.2).

### 4.3.4.3 EDC

## (standard.d.ait Requifenents for cylinders

These two bytes shall be generated as defined in 4.1.13 using
 the data mark (see 4.3.4.1) and ending with the last byte of the b 77 ffibetween coylinder 01 and cylinder 79. data field (see 4.3.4.2).

### 4.3.5 Data block gap

This field shall comprise 54 initially recorded (4E)-bytes. It is recorded after each data block and it precedes the following sector identifier. After the last data block, it precedes the track gap.

### 4.3.6 Track gap

This field shall follow the data block gap of the last sector. (4E)-bytes are written until the index hole is detected, unless it has been detected during writing of the last data block gap, in which case there shall be no track gap.

### 4.4 Track layout of a recorded flexible disk for data interchange

### 4.4.1 Representation of characters

Characters shall be represented by means of the 7 -bit coded character set (ISO 646) and, where required, by its 7 -bit or 8 -bit extensions (ISO 2022) or by means of the 8 -bit coded character set (ISO 4873).

Each 7-bit coded character shall be recorded in bit-positions B7 to B 1 of a byte ; bit position B 8 shall be recorded with bit ZERO.

The relationship shall be as shown in figure 5 .
Each 8-bit coded character shall be recorded in bit-positions B8 to B1 of a byte.

The relationship shall be as shown in figure 6.

### 4.4.2 Good and bad cylinders

A good cylinder is a cylinder which has both tracks formatted according to 4.4.4.

A bad cylinder is a gylinder which has both tracks formatted
according to 4.4.5.

### 4.4.4 Layout of the tracks of a good cylinder

References to 4.2 are for track 00, side 0 . References to 4.3 are for all other tracks.

### 4.4.4.1 Index gap

Description: see 4.2.1 and 4.3.1.
4.4.4.2 Sector identifier
4.4.4.2.1 Identifier mark

Description: see 4.2.2.1 and 4.3.2.1.

| Bits of the 7-bit combination | 0 | b7 | b6 | b5 | b4 | b3 | b2 | b1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bit-positions in the byte | B 8 | B 7 | B 6 | B 5 | B 4 | B 3 | B 2 | B 1 |

Figure 5

| Bits of the 8-bit combination | b8 | b7 | b6 | b5 | b4 | b3 | b2 | b1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bit-positions in the byte | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1 |

Figure 6

### 4.4.4.2.2 Address identifier

Description: see 4.2.2.2 and 4.3.2.2.

### 4.4.4.2.2.1 Track address

This field shall comprise 2 bytes:

## a) Cylinder address (C)

This field shall specify in binary notation the cylinder address from 00 for the outermost cylinder to 77 for the innermost cylinder.

NOTE - A unique cylinder number is associated with each cylinder (see 4.1.10). Two of these cylinders are intended for use only when there are one or two defective cylinders. Each good cylinder possesses a unique cylinder address; a defective cylinder does not possess a cylinder address. Cylinder addresses are assigned consecutively to the good cylinders in the ascending sequence of cylinder numbers.
b) Side number (Side)

Description: see 4.2.2.2.1 and 4.3.2.2.1.

For all other tracks, this field shall comprise
12 (00)-bytes
3 (A1)*-bytes

1 byte
The 16th byte shall be
(FB) indicating that the data are valid and that the whole data field can be read;
(F8) indicating that the 1 st byte of the data field shall be interpreted according to ISO 7665.

### 4.4.4.2.4.2 Data field

This field shall comprise 128 bytes or 256 bytes as specified in 4.2.4.2 and 4.3.4.2.

If it comprises less than the requisite number of data bytes, the remaining positions shall be filled with (00)-bytes.

Data fields in cylinder 00 are reserved for operating system use,

## 

Description: see 4.2.2.2.2 and 4.3.2.2.2. (Stancalcis.ite4.2.4.3 EDC
Description : see 4.2.4.3 and 4.3.4.3.
4.4.4.2.2.3 4th byte

If the last byte of the data mark is (F8)* or (F8) and the 1st Description: see 4.2.2.2.3 and 4.3.2.2.3. character of the data field is CAPITAL LETTER F, the EDC may

### 4.4.4.2.2.4 EDC

Description: see 4.2.2.2.4 and 4.3.2.2.4.

### 4.4.4.2.3 Identifier gap

Description: see 4.2 .3 and 4.3.3. These bytes may have become ill-defined due to the overwriting process.
4.4.4.2.4 Data block

### 4.4.4.2.4.1 Data mark

For track 00 , side 0 , this field shall comprise
6 (00)-bytes
1 byte
The 7th byte shall be
(FB)* indicating that the data are valid and that the whole data field can be read;
(F8)* indicating that the 1st byte of the data field shall be interpreted according to ISO 7665.
of may not be correct, as the sector contains a defective area. If the 1st character is CAPITAL LETTER D, then the EDC shall be correct.

On cylinder 00, only CAPITAL LETTER $D$ shall be allowed.

### 4.4.4.2.5 Data block gap

This field is recorded after each data block and it precedes the following sector identifier. After the last data block, it precedes the track gap.

It comprises initially 27 (FF)-bytes (see 4.2.5) or 54 (4E)-bytes (see 4.3.5). These bytes may have become ill-defined due to the overwriting process.

### 4.4.4.2.6 Track gap

Description: see 4.2.6 and 4.3.6.

### 4.4.5 Layout of the tracks of a bad cylinder

### 4.4.5.1 Contents of the fields

The fields of the tracks of a bad cylinder should have the following contents:

### 4.4.5.1.1 Index gap

Description: see 4.2.1 and 4.3.1.

