INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Ship's bridge layout and associated equipment — Requirements and guidelines

Aménagement de la passerelle d'un navire et disposition de ses équipements annexes — Exigences et directives

8

Reference number ISO 8468 : 1987 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 8468 was prepared by Technical Committee ISO/TC 8, *Shipbuilding and marine structures.*

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

Ship's bridge layout and associated equipment – Requirements and guidelines

0 Introduction

This International Standard has been developed to ensure that designs of ships' bridges provide adequately for the requirements for safe navigation to prevent confusion arising from bridge arrangements which are unusual.

Where there are physical limitations in applying this International Standard to small ships or to ships of unusual design, the general principles should still apply.

1 Scope and field of application

This International Standard specifies basic functional requirements for bridge configuration, bridge arrangement, bridge equipment and bridge environment.

Wherever applicable, guidelines have been drawn up for the methods and solutions to meet the functional requirements.

This International Standard applies to seagoing ships where bridge duty is regularly maintained.

NOTE — Users of this International Standard should note that while attempting to observe its requirements they should, at the same time, ensure compliance with such statutory requirements, rules and regulations as may be applicable to the individual ship concerned.

2 References

ISO 2412, Shipbuilding – Colours of indicator lights.

ISO 2631, Evaluation of human exposure to whole-body vibration —

Part 1 : General requirements.

Part 4 : Evaluation of crew exposure to vibration on board seagoing ships (1 to 80 Hz).¹⁾

ISO 3434, Shipbuilding – Heated glass panes for ships' windows.

ISO 3904, Shipbuilding — Clear view screens.

ISO 4867, Code for the measurement and reporting of shipboard vibration data.

ISO 4868, Code for the measurement and reporting of local vibration data of ship structures and equipment.

ISO 6954, Mechanical vibration and shock — Guidelines for the overall evaluation of vibration in merchant ships.

IEC Publication 447, Standard directions of movement for actuators which control the operation of electrical apparatus.

IMO Resolution A.343(IX), Recommendation on Methods of Measuring Noise Levels at Listening Posts.

IMO Resolution A.468(XII), Code on Noise Levels on Board Ships.

IMO Resolution A.574(XIV), Recommendation on General Requirements for Electronic Navigational Aids.

International Regulations for Preventing Collisions at Sea, Annex III (as amended).

3 Definitions

For the purposes of this International Standard, the following definitions apply.

3.1 bridge : That area from which the navigation and control of the ship is exercised, including the wheelhouse and bridge wings.

3.2 bridge wings : Those parts of the bridge on both sides of the ship's wheelhouse which extend to the ship's side.

3.3 catwalk : Extension to a deck that is wide enough to allow the passage of a man.

3.4 chartroom area : Part of the wheelhouse situated and equipped for adequate performance of voyage planning/plotting activities.

¹⁾ At present at the stage of draft.

3.5 commanding view : View without obstructions which would interfere with the navigator's ability to perform his immediate task.

3.6 conning position : Place on the bridge with a commanding view and which is used by navigators when commanding, manoeuvring and controlling a ship.

3.7 display : Means by which a device presents visual information to the navigator, including conventional instrumentation.

3.8 ergonomics : Application of the human factor in the analysis and design of equipment, work and working environment.

3.9 field of vision : Angular size of a scene that can be observed from a position on the ship's bridge.

3.10 helmsman : Person who steers a ship underway.

3.11 monitoring : Act of constantly checking equipment and environment in order to detect any changes.

3.12 navigating and manoeuvring workstation : Workstation where ship's speed and course are considered and controlled.

3.13 navigator : Person navigating, operating bridge equipment and manoeuvring the ship.

3.14 percentile : Percentage of population.

3.15 seagoing ship : Ship navigating on the high seas, i.e. areas along coasts and from coast to coast.

3.16 superstructure : Decked structure, not including funnels, which is on or above the freeboard deck.

3.17 wheelhouse : Enclosed area of the bridge.

3.18 workstation : Position at which one, or several tasks constituting a particular activity are carried out.

4 Bridge configuration

4.1 Field of vision

4.1.1 Every effort shall be made to place the bridge above all other superstructures.

4.1.2 The view of the sea surface from the conning position shall not be obscured by more than two ship lengths or 500 m, whichever is less, forward of the bow to 10° on either side irrespective of the ship's draught, trim and deck cargo (e.g. containers). (See figure 1.)

4.1.3 The height of the lower edge of the front windows shall allow a forward view over the bow for a person in a sitting position at the workstation.

Guidelines :

The height of the lower edge of front windows above the deck should be kept as low as possible, and should not, as far as practicable, be more than 1 000 mm.

4.1.4 The upper edge of the front windows shall allow a forward view of the horizon for a person in a standing position with an eye height of 1 800 mm at the navigating and manoeuvring workstation when the ship is pitching in heavy seas.

Guidelines:

The height of the upper edge of front windows above the deck should be as high as practicable and at least allow a forward view of the horizon when the bow is 10° below its position on even keel. The minimum height of the upper edge of front windows above the deck surface should be 2 000 mm. (See figure 2.)

The dimensions in figure 2 are based upon an eye height of 1 800 mm, referring to a person of a height of 1 900 mm, at a distance of 750 mm from the bridge front bulkhead.

For arrangements where the navigator would normally stand further back from the bridge front bulkhead, the same eye height should be used to determine the height of the upper edge of the front windows.

Figure 1 — Forward view

Dimensions in millimetres

4.1.5 It shall be possible to observe all objects necessary for navigation, such as ships and lighthouses, in any direction from inside the wheelhouse.

Guidelines :

There should be a field of view around the vessel of 360° obtained by an observer moving within the confines of the wheelhouse. (See figure 3.)

4.1.6 At the navigating and manoeuvring workstation and at the conning position, the navigator's field of view shall be sufficient to enable him to comply with the International Regulations for Preventing Collisions at Sea.

Guidelines :

a) The horizontal field of view from the navigating and manoeuvring workstation and from the conning position should at least extend over an arc from 22,5° abaft the beam on one side, through forward, to 22,5° abaft the beam on the other side. (See figure 4.)

b) From a monitoring workstation, the field of view should extend at least over an arc from 90° on the port bow, through forward, to $22,5^{\circ}$ abaft the beam on starboard. (See figure 5.)

c) The field of vision from a workstation on the bridge wing should extend over an arc from at least 45° on the opposite bow through dead ahead and then aft to 180° from dead ahead. (See figure 6.)

4.1.7 The helmsman's field of vision shall be sufficiently wide to enable him to carry out his functions safely.

Guidelines:

The helmsman's field of vision from the workstation for manual steering should extend over an arc from dead ahead to at least 60° on each side. (See figure 7.)

NOTE -- The workstation should not be placed immediately abaft the front windows in order to obtain the required field of vision.

Figure 4 — Navigating and manoeuvring workstation and conning position

ζ.

Figure 7 – Helmsman's workstation

4.1.8 Blind sectors caused by cargo, cargo gear and other obstructions shall be as few and as small as possible, and not in any way influence a safe look-out from the navigating and manoeuvring workstation and from the conning position.

Guidelines :

The total arc of blind sectors forward of the beam seen from the navigating and manoeuvring workstation and from the conning position should not exceed 20°. Each individual blind sector should not exceed 10°. Over an arc from dead ahead to at least 10° on each side, each individual blind sector should not exceed 5°. The clear sector between two blind sectors should not be less than 5°.

4.1.9 The ship's side shall always be visible from the bridge wing especially where tugs or pilot boats come alongside and where the ship touches the jetty.

Guidelines :

Bridge wings should be provided out to the maximum beam of the ship. The view over the ship's side should not be obstructed.

4.2 Windows

4.2.1 Divisions between windows shall be kept to a minimum. No division shall be installed immediately forward of any workstation, including the centre-line. If stiffeners between windows are to be covered, this shall not cause further obstructions of the field of view from any position inside the wheelhouse.

Guidelines :

Windows, especially on the centre-line, should be as wide as possible. The divisions between front windows should not exceed 150 mm. If stiffeners are used, divisions should not exceed 100 mm in width and 120 mm in depth.

4.2.2 Bridge front windows shall be inclined from the vertical plane to avoid reflections.

Neither polarized nor tinted glass shall be fitted.

Guidelines :

As far as practical, all bridge windows should be inclined from the vertical plane top out, at an angle of not less than 15° and not more than 25° . Exceptions can be made for windows in bridge wing doors.

4.2.3 A clear view through the windows shall be provided at all times.

Guidelines :

To ensure a clear view in bright sunshine, sunscreens with minimum colour distortion should be provided at all windows in front of workstations. Such screens should be readily removable and not permanently installed.

To ensure a clear view, heavy-duty wipers, preferably provided with an interval function and a fresh water wash, are recommended for the majority of the front windows. If clear view screens are installed, they should be in accordance with ISO 3904.

Such wipers should be capable of operating independently of each other.

Efficient cleaning, de-icing and de-misting systems should be installed to ensure a clear view in all operating conditions. Where heated glass panes are installed, they should be in accordance with ISO 3434. A fixed catwalk with guardrails, fitted under the bridge windows, should be provided to enable cleaning of windows in the event of failure of the systems.

4.2.4 Sound signals shall be audible from the interior of the wheelhouse.

Guidelines :

It should be possible to open some windows in the wheelhouse in order to hear sound signals.

NOTE - In no case should horizontally sliding windows be used.

5 Bridge arrangement

5.1 Location and interrelation of workstations

5.1.1 The layout of the bridge, including location and layout of the individual workstations, shall ensure the required field of view for each function.

5.1.2 In addition to the individual workstations, an adequate conning position shall be provided close to the forward centre window.

Guidelines :

If the view in the centre-line is obstructed by large masts, cranes, etc., two additional conning positions giving a clear view ahead should be provided, one on the port side and one on the starboard side of the centre-line, no more than 5 m apart.

5.1.3 The control of the ship shall be allocated to a certain area of the bridge where only instruments and controls necessary for navigating and manoeuvring shall be located.

5.1.4 The main workstations for navigating and manoeuvring, and the arrangement of instruments pertinent to these stations, shall be located sufficiently close together to enable a single navigator to cover his operation and to provide him with all necessary information so that he can carry out his functions from one working position but without being restricted to a specific location.

Guidelines :

The main workstations should be planned, designed and placed within an area spacious enough for not less than two operators, but close enough to allow the stations to be operated by one person.

The consoles, including a chart table if provided, should be positioned so that the instruments they contain are mounted in such a manner as to face a person looking forward.

5.1.5 From a monitoring workstation, it shall be possible to see and hear the persons at the navigation, manoeuvring and steering workstations.

Guidelines:

A talkback communication system between wing and wheelhouse should be installed where the distance from the wing extremity to the wheelhouse centre-line is greater than 10 m. Where workstations are widely spread, talkback facilities should be provided so that unhampered communications can be achieved under all operating conditions. It is important that all order/action communication systems be two-way. **5.1.6** The workstation for manual steering shall preferably be located on the ship's centre-line. If the workstation for manual steering is located off the centre-line, special steering references for use by day and night shall be provided, e.g. sighting marks forward.

Guidelines :

If the view ahead is obstructed by large masts, cranes, etc., the steering station should be located a distance to starboard of the centre-line, sufficient to obtain a clear view ahead.

5.1.7 The navigator shall be able to watch the area immediately in front of the bridge superstructure from the wheelhouse.

Guidelines :

There should be a close approach access to at least one front window. If this requirement is met by combining "an adequate conning position" (5.1.2) and the required access specified in this clause, the width of the total access should be sufficient to accommodate two persons.

5.2 Location of instruments and equipment

5.2.1 Each workstation shall be capable of presenting basic information and shall contain the equipment required to enable the navigator to carry out the relevant functions safely.

Ergonomic principles and views of experienced, practising mariners shall be taken into consideration in the design of workstations.

Guidelines:

The basic categories of instrument information and equipment for the functions to be performed are :

a) The navigation functions — Control and displays for navigation, enabling the user to :

 determine and plot the ship's position, course, track and speed,

alter course,

effect internal and external communication related to navigation,

- monitor time, course, speed and track, propeller revolutions, pitch indicator and rudder order and angle;

b) Manoeuvring functions --- Controls and displays enabling the user to :

- analyse the traffic situation,
- decide on collision avoidance,
- alter course,
- change speed,

- effect internal and external communication related to manoeuvring,

operate docking aid systems,

- monitor time, course, speed and track, propeller revolutions, pitch indicator and rudder order and angle.

The information system and control possibilities under a) and b) should be made available to the workstations for navigating and manoeuvring, in such a way that the tasks at each of these stations can be efficiently carried out.

5.2.2 Instruments or displays providing visual information to more than one person on duty shall be located for easy viewing by all users concurrently, or if this is not possible, the instruments or displays shall be duplicated.

NOTE — Certain instruments displaying information to more than one workstation may be located above the front windows if dimensions allow. Such instruments or displays are : ship's heading, wind, water depth, speed, rate of turn, rudder angle, propeller revolutions (r/min), propeller pitch and time.

5.3 Configuration and dimensions of consoles

 $\ensuremath{\mathsf{NOTE}}$ — The configuration and dimensions of consoles in this clause exclude radar consoles.

5.3.1 The navigator shall be able to use all instruments and controls necessary for navigating and manoeuvring in any normal working position.

Guidelines:

Based on ergonomic principles, the width of consoles designed for single person operation should not exceed 1 600 mm.

NOTE — Figures 8 and 9 show the configuration and dimensions of consoles to be used by operators in both standing and sitting positions. The console profile meets the anthropometric value of the 97,5 percentile and the 2,5 percentile of operators.

5.3.2 The height of consoles shall not interfere with the requirements in 4.1.3.

Guidelines:

The top of the consoles should not exceed a height of 1 350 mm. (See figures 8 and 9.)

5.3.3 Consoles shall principally be divided into two areas :

a) information/presentation shall be principally located in the vertical part of the console;

b) controls shall be in the horizontal part.

5.3.4 The chart table shall be large enough to accommodate all chart sizes normally used internationally for maritime traffic. It shall have facilities for lighting the chart.

Guidelines :

Chart table dimensions should be :

- width : not less than 1 200 mm;
- depth : not less than 850 mm;
- height : not less than 900 mm and not more than 1 000 mm.

The chart table should have facilities to accommodate charts larger than the table depth, for example a 10 mm slit along front and back edges of the chart table surface.

Figure 8 - Console for combined standing/sitting position (example of standing position)

ISO 8468 : 1987 (E)

9