
INTERNATIONAL
STANDARD 857 I-2

First edition
1988-IO-01

AMENDMENT 1
1992-12-15

Information processing systems - Open Systems
Interconnection - File Transfer, Access and
Management -

Part2:
Virtual Filestore Definition

AMENDMENT 1 : Filestore Management

Technologies de /‘information - lnterconnexion de systemes ouverts (OS/) -
Transfert, acctk et gestion de tkhiers -

Partie 2: Dkfinition du systkme de fichiers virtue/

AMENDEMENT I : Gestion du systhme de fichiers

- - = = IT = = Z :a : ; 5 1 = II = Reference number
IS0 8571-2:1988/Amd.1:1992 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 857192:1988/Amd.1:1992 (E)

Foreword
IS0 (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of IS0 or IEC participate in
the development of International Standards through technical committees
established by the respective organization to deal with particular fields of
technical activity. IS0 and IEC technical committees collaborate in fields of
mutual interest. Other international organizations, governmental and non-
governmental, in liaison with IS0 and IEC, also take part in the work.

In the field of information technology, IS0 and IEC have established a joint
technical committee, lSO/IEC JTC 1. Draft International Standards adopted by the
joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

Amendment 1 to International Standard IS0 8571-21988 was prepared by Joint
Technical Committee lSO/IEC JTC 1, Information technology.

IS0 8571-2 consists of the following parts, under the general title information
processing systems - Open Systems Interconnection - File Transfer, Access and
Management

- Part 7 : General introduction

- Part 2 : Virtual Filestore Definition

- Part 3 : File Service Definition

- Part 4 : File Protocol Specification

- Part 5 : Protocol Implementation Conformance Statement Proforma

0 lSO/IEC 1992

All rights reserved. No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

lSO/IEC Copyright Off ice

Printed in Switzerland

0 Case postale 56 l CH-1211 Geneve 20 l Switzerland

ii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 857%2:1988/Amd.1:1992 (E)

Information processing systems - Open Systems
Interconnection - File Transfer, Access and Management -

Part2
Virtual Filestore Definition

AMENDMENT 1 : Filestore Management

NOTE - This amendment has additional subclauses and tables to IS0 8571 which are indicated by the use of lower case
Roman letters beginning with “a” and imply ordering alphabetically, following the clause with the same numerical value in
IS0 8571. These and all subsequent subclauses, tables, and cross references will be renumbered in subsequent editions.

Introduction
(amend 3rd paragraph, page 1)

IS0 8571 defines services for file transfer, access and
management. It also specifies a protocol available
within the application layer of the Reference Model.
The service defined is of the category Application
Service Element (ASE). It is concerned with
identifiable bodies of information which can be treated
as files, stored and managed within open systems, or
passed between application processes.

(amend 4th paragraph, page I)

IS0 8571 defines a basic file service. It provides
sufficient facilities to support file transfer, file access,
and management of files stored on open systems.
IS0 8571 does not specify the interfaces to a file
transfer, access or management facility within the local
system.

1 Scope and field of application
(amend 1st paragraph)

This part of IS0 8571

a) defines an abstract model of the virtual filestore
for describing files and filestores (see section
one);

b) defines the set of Actions available to manipulate
the elements of the model (see section two);

c) defines the properties of individual objects and
associations in terms of attributes (see section
three).

d) defines the form of representations of files
with hierarchical structures (see clause 7 in
section one).

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 8571-2:1988/Amd.l:1992 (E)

Section one: The filestore model

5 Basic concepts
(amend 3rd paragraph (atier note), page 2)

A filestore may contain an arbitrary number (greater
than or equal to one) of objects (see figure 1).

(amend 4th paragraph, page 2)

The properties of each object are defined by the
values of a set of object attributes. These attributes
are global; at any one time, a single attribute value is
available to all initiators. Different object types may
have distinct types of attributes, as well as types of
attributes in common.

(add following paragraph 5, page 2)

Each file-directory maintains a parenthood relationship
with zero or more subordinate objects. Some of the
file-directory attributes may identify access control
information to subordinate objects.

Each reference maintains a link to exactly one other
object. The referent is either a file or a file-directory.
The identity of the referent is available as an attribute
of the reference, in the form of a (possibly incomplete)
primary pathname. This attribute can not be changed.
Other reference attributes may identify the object type
and access control information to the linked object. If
the identity of the referent changes, the corresponding
reference ceases to exist

(amend 7th paragraph, page 3)

The first are in one to one correspondence with the
object attributes, and indicate the active value of those
attributes as perceived by the initiator.

(amend 9th paragraph, pages 3 and 4)

An arbitrary number (greater than or equal to zero) of
initiators may have initialized FTAM regimes at any
one time. Exchanges between the initiator and the
responder lead to the selection of at most one object in
the responder’s virtual filestore to be bound to a
particular RAM regime at any one time. Note that
multiple file objects may be identified for later selection
via the generalized selection service. However only
one object may be selected at a time. Further, no
guarantees are placed on the availability of any file
object in this group if it is eventually selected.

(add after clause 5, page 4)

5a The virtual filestore model
5a.l Fliestore Objects

A virtual filestore is comprised of one or more of three
kinds of objects:

a) files;

b) file-directories;

C) references.

5a.l .I Files

File objects contain data, and provide structuring
information to access the data within them (see clause
7) .

5a.l.2 File-directories

File-directory objects maintain a set of relationships to
zero or more other objects within the filestore, whether
those objects are files, references, or other file-
directories. This relationship is parenthood. A file-
directory is said to be the parent of an object if it
maintains the relationship of parenthood for that
object. Similarly, an object is said to be the child of a
specified directory if that directory is the object’s
parent. In this way, file-directories provide a means of
grouping objects within the virtual filestore. These
groups can then be used to provide a structural order
(the filestore tree) to the data files within the filestore.

An object is ‘in’ a file-directory if either

a) that file-directory is the parent of the object

b) there is a reference who’s parent is the file-
directory, linking to the object.

An object is ‘under’ a file-directory if either

a) the object is in the file-directory

b) the object is in another file-directory that is under
the file-directory. (Note this is a recursive
definition.)

5a.l.3 References

Reference objects maintain exactly one relationship to
exactly one other object within the filestore. That -
relationship is linkage. The object % linked by the
reference must be either a file or a file-directory. The
structure defined by the parent and linkage relations is
called the filestore structure.

2

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 8571-2:1988/Amd.l:1992 (E)

5a.2 Filestore structure

Every virtual filestore has a root object. The root is the
only object in the filestore that has no parent. This
root is either a file or a file-directory. It cannot be a
reference. In the case where it is a file, that file will be
the only object within that filestore.

The relationship of parenthood results in a hierarchical
model of the filestore, where the root node is
represented by the filestore root object, intermediate
nodes are represented by file-directories maintaining
at least one parenthood relationship, and leaf nodes
are represented by files, references, and file-
directories maintaining no parenthood relationships.

References may be used for convenience of access in
special situations, or for special security needs.
References provide a simple means of allowing an
object to appear in more than one place in the filestore
hierarchy without having to duplicate the object, or
worry about maintaining consistency between
duplicate objects. In normal use a user will not
observe any difference in behavior whether an object
is accessed via parenthood or reference.

5a.3 Name resolution

An object is identified within the virtual filestore by a
pathname. A pathname is comprised of a series of
object names. Each object name in the series
identifies the next child object in the virtual filestore.
The last object name in the series identifies the target
object. The root object in a filestore is identified by a
pathname comprised of zero object names. The exact
algorithm is described in 5a.3.2.

5a.3.1 The current name prefix

When the pathname of an object begins its series of
object names at the root of the filestore, it is called a
complete pathname. Otherwise, to uniquely identify
an object within the virtual filestore, the incomplete
pathname must be resolved to a complete pathname.
This is done with the current name prefix activity
attribute. The current name prefix is assigned to the
association by the responder. The current name prefix
is a complete pathname of a file-directory object. The
actual mechanisms for this assignment are outside the
scope of FTAM, but possible uses could be for
providing default file-directories to users, protecting
filestore users from potential filestore organizational
changes, or for enhanced security control.

An incomplete pathname is resolved to a complete
pathname by prepending the series of object names
within the current name prefix to the incomplete
pathname.

Objects within a virtual filestore may be referenced by
complete pathname, or by an incomplete pathname.
In the latter case, the responder resolves the
incomplete pathname to a complete pathname using
the current name prefix. The file protocol is designed
such that the responder need not reveal the current
name prefix to the initiator, should it be desirable to
conceal the filestore structure above this file-directory
for security or other reasons.

5a.3.2 Resolving a pathname

A complete pathname is resolved to an object by a
series of steps using the object names of the
pathname to locate the intermediate objects along the
path in turn.

Initially, the root node is located.

For each step, while object names of the pathname
remain to be resolved:

a) if the object located is a reference, and the
filestore user has passthrough access to this
reference, then the object which it references is
located (if the user does not have passthrough
access to this reference, or if the referenced
object is not found, an error is reported);

b) if the object located is a file-directory, and the
filestore user has passthrough access to this
file-directory, then the child object named by the
next object name of the pathname is located (if
the user does not have passthrough access to
this directory, or the next object name does not
correspond to any child of this directory, an error
is reported);

c) if the object located is a file, then an error is
reported.

If the object located when all object names of the
pathname have been exhausted is a reference, then
the final action taken depends on the operation being
performed:

d) if the operation is specific to reference objects,
then the operation is performed on the reference
object located;

e) if the operation is not specific to reference
objects, then the object to which the reference
refers is located, and the operation is performed
on the referenced object.

5a.4 Object type checking

If the object located when a pathname is resolved is
not of the type required for the operation to be
performed then an error is reported.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 8571.2:1988/Amd.l:1992 (E)

0 - directory

0 - reference

- - parenthood
e - linkage

Figure la - An example tree structure of a VFS

5a.5 Example c) GJKD

Figure la shows an example of a filestore containing
references.

The file F has primary pathname E,F. However, it may
also be accessed by the following names involving

Thus for file selection, the filestore in this example
appears as if duplications of data took place as in
figure 1 b.

NOTES
references:

a) AD

b) WV=

1) In normal use, except when explicit manipulation of the
reference object is carried out, a user will not observe
any difference in behaviour whether an object is
accessed via parenthood or reference.

D
COPY
of F

COPY COPY D
of B of c COPY

of F
\ f .

Figure 1 b - An example of the apparent structure of a VFS

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 857%2:1988/Amd.l:1992 (E)

2) References may be used for convenience of access in
special situations. References may have, in conjunction
with the path access control attribute, applications to
security and secure views of the filestore structure.

(amend title of clause 6, page 4)

6 Object selection
(amend 1st paragraph, page 4)

From outside the filestore, selection of an object is
always made using the pathname of the object. Even
in the case of generalized selection services, the
actual selection of a single object from within the group
of file objects maintained in the generalized selection
group activity attribute is made by implicit (i.e., internal
to the responder controlling the filestore) reference to
the pathname of the object. The reference to an
object is within the context of a particular filestore
identified by the application entity title. The application
entity title refers to the location of file storage, and is
known to the file service users, but lies outside the
scope of FTAM. The pathname of an object is defined
in clause 13.19.

(insert after 1st paragraph, page 4)

6.1 Methods of object selection

Two methods of object selection are provided.

6.1 .I Simple object selection

(amend 2nd paragraph of clause 6, page 4)

Simple object selection takes place in two stages.
First, an FTAM regime is initialized with the application
entity handling the virtual filestore, and then
information is given to this entity to identify the object
unambiguously from among all the objects in the
filestore. This information is the pathname of the
object. The current pathname activity attribute is set to
the pathname used to identify the selected object.

(replace 3rd paragraph of clause 6, page 4)

6.1.2 Generalized object selection

The second form of object selection works only with
file objects and references to file objects. It is the
generalized selection mechanism. First, an FTAM
regime is initialized with the application entity handling
the virtual filestore. Assertions regarding the file
objects’ attributes are provided by the initiator to the
responder. This group of complete pathnames is
created and maintained by the responder in the

generalized selection group activity attribute. Inclusion
in this group is based on the attribute assertions
provided by the initiator. Access permission by the
initiator to the files based on requested actions and
access authorization provided by the initiator is
implicitly an assertion in identifying the group of
pathnames.

NOTE -The generalized file selection mechanism does not
imply formal selection of the objects identified by
pathname within the generalized selection group. It merely
collects the pathnames for later use in other operations.

Within the FTAM regime, multiple sequential select
regimes can be established. These sequential select
regimes are created either by selecting another
pathname in the generalized selection group, or by the
simple object selection mechanism, described above.

Selecting another object in the generalized selection
group operates by requesting the responder to choose
a previously unselected pathname from the pathname
group, and attempting to select it. If it cannot be
selected (for example, it has been renamed or deleted
since it became a member of the group, or some
access control attributes controlling access to the
object have been changed to exclude the initiator),
then that pathname is removed from the pathname
group, a new previously unselected pathname is
chosen, and the responder tries again. The current
pathname activity attribute is the pathname chosen.
No status codes are provided to the initiator to identify
this condition. A pathname is considered previously
unselected until it is chosen by the responder during a
select another action. Selecting an object explicitly by
pathname does not affect it’s status as previously
selected or not within the pathname group.

The initiator deselects an object, which was selected
in this manner, by deselecting or deleting the file or its
reference. The initiator is notified that no more
unselected pathnames exist in the group through a last
member indicator. If additional pathnames exist within
the group, but upon attempting to select the next one,
none are found that can be selected by this initiator,
(for example, a concurrency control lock is now in
place), then an error is returned.

If, after either of these notifications, another request to
select another object is received from the initiator, the
responder then considers ail remaining pathnames in
the group as previously unselected, and begins again.
If no pathnames remain in the list, a permanent error is
returned. No access guarantees are made regarding
the objects listed in the generalized selection group.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 8571-2:1988/Amd.l:1992 (E)

Pathnames may be removed from the group by the
responder if the responder determines that the object
cannot be selected by the initiator. The initiator will not
be notified of any deletions from the group. It is
possible that, because of references, the same file
object will appear in the group multiple times, under
different pathnames.

All generalized actions are considered to be specific to
a file object. Any references to file objects that may be
included in the generalized selection group are treated
transparently, so that users are not necessarily aware
that they are dealing with a reference.

6.2 Selection of references

After selecting or creating a reference object, actions
appropriate to a reference object and actions
appropriate to the type of object referenced are
allowed (see 5a.3.2). Actions specific to a reference
object operate on the selected reference object and
its attributes. Actions not specific to reference objects
operate on the referenced object and its attributes,
with the exception of the object name attribute; in
this case, the referenced object “inherits” the object
name attribute of the reference object for this specific
association for the duration of the select regime. The
current pathname activity attribute is set from the
pathname used to identify the reference object.

A change attribute action not specific to a reference
object results in changes to the referenced object’s
attributes, with the exception of the object name
attribute; in this case, the object name (and possibly
the primary pathname) of the reference object is
changed.

Actions specific to reference objects are:

a) F-LINK

b) F-UNLINK

c) F-READ-LINK-ATTRIB

cl) F-CHANGE-LINK-AT-T-RIB

Actions involving attribute value assertion lists may
operate directly on references, depending on the
settings of the object type attribute value assertions, if
any.

When invoking an attribute value assertion list, the
reference object’s attributes and the referenced
object’s attributes (with the inherited object name
attribute) are considered independently. The
reference object successfully matches the attribute
value assertion list if either of the reference object’s or

referenced object’s attributes match the assertions.

(add after clause 7, page 7)

7a Actions on objects
The virtual filestore defines actions which manipulate
the objects within the filestore. The definition of the
individual actions (see section two) states the objects
to which actions apply, and the effects on those
objects. Some actions also establish filestore state,
such as the current name prefix, or generalized
selection group.

The actions are invoked by service primitives. Their
semantics are defined in conjunction with the filestore
management primitives defined in IS0 8571-3.

Use of each action is subject to access control by the
responder (see 12.16).

9.1 Attribute scope

(amend 1st paragraph, page 8)

Two classes of attributes are defined:

a) object attributes; each object is described by
one set of object attribute values. The scope of
the object attributes is the virtual filestore, and if
an object attribute value is changed by the
actions of one initiator, the new value is seen by
any other initiators subsequently reading that
attribute. Some attributes are specific to the
type of object.

b) activity attributes; each activity takes place
within an FTAM regime and is described by one
set of activity attribute values. The scope of the
activity attributes is at most the FTAM regime,
and a distinct and independent set of activity
attribute values is bound to each FTAM regime.
There are two distinct subdivisions of the activity
attributes.

1) The active attributes are in one to one
correspondence with the object attributes.

NOTE - In most cases the mapping is trivial,
since many file attributes are fixed at object
creation time. However several of the active
attributes such as active contents type and active
legal qualifications have distinct values which
are subsets of the object attribute values.

2) The current attributes concern the initiator
and, are in general derived from the
parameters on the protocol exchanges.

6

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 857%2:1988/Amd.l:1992 (E)

NOTE - The current attributes are not exactly
equivalent to static object attributes, but in some
cases are closely related. For example the
current access passwords must be members of
the access passwords term in the access control
attribute.

(add after clause 9.4, page 9)

9.5 Extension attribute sets

The file protocol provides a mechanism for access to
object attribute sets which are defined externally to this
standard. This is done through extension attribute
sets. An extension attribute set consists of an object
identifier to identify the attribute set definition, and
some number of attributes belonging to the identified
attribute set. Each attribute is identified by it’s own
Object Identifier, and maintains a value specific to that
attribute.

If the initiator sends or requests the value of attribute
sets not understood by the responder, the responder
merely ignores those attribute sets it does not
understand, completing the action as though they had
not been present.

The responder must never send information about an
attribute set not specifically requested by the initiator.

Requesting or recognizing an attribute extension set
implies support for all attributes defined within the at-
tribute extension set, and their mechanics.

9a Attribute value assertion lists
The file protocol provides a means for identifying a set
of object pathnames based on the attributes of the
objects they identify. This mechanism is by attribute
value assertion list.

An attribute value assertion consists of an
identification of an attribute, a target attribute value,
and a relationship. An attribute value assertion is true
for a specified object pathname if, for the object
identified by the pathname,

a) the identified attribute exists for this object type,
and

b) the identified attribute for that object has the
specified relationship to the supplied target
attribute value.

An attribute value assertion list consists of a set of
attribute value assertion sublists, each sublist
consisting of a set of attribute value assertions. An
attribute value assertion list describes a subset of all

pathnames of objects within the virtual filestore.

An object pathname is described by an attribute value
assertion list if all of the following are true:

a) the initiator has read-attribute access to the
object via that pathname;

b) the initiator has read access to each file-
directory specified implicitly in the pathname
pattern (see the note in 9a.1.2);

c) the initiator has passthrough access to each file-
directory specified implicitly in the pathname
pattern;

d) there exists at least one attribute value assertion
sublist in the attribute value assertion list for
which every attribute value assertion within it
has the value ‘true’ for the object identified by
that pathname.

When performing actions on objects using attribute
descriptions to identify the set of objects, the initiator
provides an attribute value assertion list to describe
the desired objects.

The responder then creates a list of pathnames based
on the above criteria.. The objects in this list of
pathnames may then be operated upon singly, or as a
group.

9a.l Assertion types and components

9a.l .l Relations for GraphicStrIngs

Assertions regarding GraphicStrings are made in
terms of the logical relation “equality” in comparison to
string patterns. A string pattern consists of a
sequence of substring patterns. A substring pattern
can be any of three types:

a) a specific sequence of characters;

b) a specification for an exact number of characters
(those characters which are unimportant);

c) a specification for zero or more characters.

A GraphicString is equal to a string pattern if

1) every character in the GraphicString can be
sequentially matched with a character in a
pattern of type ‘a’, a position in a substring
pattern of type ‘b’, or a substring pattern of type
‘c’ (pattern types correspond to the numbering of
the list, above);

2) there are no characters in any string pattern of
type ‘a’, or positions within string pattern type ‘b’
which do not have a corresponding character
from the GraphicString.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 8571-2:1988/Amd.l:1992 (E)

Table la - Bitstring and bitstring pattern relationships

I Significance
I

Value of
I

Meaning
assertion I

Not significant
Significant
Significant

any bit is not significant for matching
0 bit is significant and matches 0
1 bit is significant and matches 1

9a.l.2 Relations for Pathnames 9a.l.3 Relations for dates and times

Assertions regarding Pathnames are made in terms of
the logical relation “equality” in comparison to
pathname patterns. Pathname patterns can be either
complete pathname patterns, specifying pathname
searches are to be made from the filestore root; or
incomplete pathnames, specifying pathname searches
are to be made from the file-directory identified by the
current name prefix.

Assertions regarding dates and times can be made in
terms of

Either pathname pattern consists of a sequence of
component patterns. A component pattern can take
any of two forms:

a) “less than” (i.e. before, or older than);

b) “greater than” (i.e. after, or younger than); or

C) “equality” (i.e. concurrent, or same age).

Assertions are evaluated according to both the
precision given and the precision available on the local
system. .

a) a string pattern;

b) a specification for zero or more object names.

A Pathname is equal to a pathname pattern if

1) every object name in the Pathname can be
sequentially matched with a string pattern in a
component pattern of type ‘a’, or a component
pattern of type ‘b’ (pattern types correspond to
the numbering of the list, above);

9a.l.4 Relations for integers

Assertions regarding integers can be made in terms of
the logical relations

a) “less than”,

b) “greater than”, or

4 “equality”,

Where all are taken with their standard mathematical
meanings,

2) there are no component patterns of type ‘a’
which do not have a corresponding object name
from the Pathname.

9a.l.5 Relations for bitstrings

NOTES

1) An object name is said to be “explicit” if the component
pattern is of type “a”, and that string pattern consists of
a single substring pattern of type “a” (see 9a.1.1).
Otherwise, the object name is said to be “implicit”.

Assertions regarding bitstrings can be made in terms
of “equality” with a pattern. A bitstring pattern consists
of a significance mask and a value assertion. Matches
against bitstring patterns are done on significant bits
as shown in Table la.

2) In each attribute value assertion sublist, there is always
a pathname attribute assertion in effect, even if one is
not supplied by the initiator. In that case, a pathname
pattern resolving to all objects in the file-directory
specified by the current name prefix is implied.

Access control passwords are only used with explicit
pathnames.

A bitstring is equal to a pattern if each significant bit in
the bitstring matches the corresponding assertion
value in the pattern. Any bits appearing in the bitstring
type attribute beyond the length of the significance
mask are assumed to be not significant. Any bits set
to significant appearing in the significance mask
beyond the length of the bitstring type attribute are
assumed to not match, making the attribute value not
equal to the pattern.

9a.l.6 Relations for object identifiers

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

IS0 857%2:1988/Amd.I:1992 (E)

Table

1 less than

equality

I greater than not equal

b - Attribute rel

less than

less than
or eaual

Assertions regarding object identifiers can be made in
terms of “equality”. An object identifier pattern consists
of an object identifier. An object identifier attribute is
equal to an object identifier pattern if they are identical
object identifiers.

9a.l.7 Relations for externally defined attributes

Relations for externally defined attributes must be
defined within the specification of the external
attribute.

9a.l.8 Relations for boolean

Assertions regarding boolean attributes are made in
terms of “equality”, taken with its standard
mathematical meanings.

9a.l.9 Relations for enumerated values

Assertions regarding enumerated attributes are made
in terms of “equality”, taken with its standard .
mathematical meanings.

9a.l .I 0 Relatlons for octetstrlng values

Assertions regarding octetstring attributes are made in
terms of “equality”. An octetstring is equal to an
octetstring provided in an attribute value assertion if
the two octetstrings are the same length, and each
octet within one octetstring is equal in numerical value
to the corresponding octet of the other octetstring.

9a.2 Attribute value assertion structure

An attribute value assertion consists of an
identification of an attribute, a target attribute value,
and a relationship.

9a.2.1 Attribute Identification

The way an attribute value assertion identifies the
attribute against which it is to be compared depends
on the specific attribute. Attributes can be either
internal to the files protocol, or else outside the files
protocol, using attribute extensions.

ltionship combinations

greater than
or equal

or equal I

An attribute value assertion identifies itself as
pertaining to an attribute specified within the files
protocol implicitly by position within a list.

An attribute value assertion identifies itself as
pertaining to an attribute within an attribute
extension set by identifying the attribute by its object
identifier. Mapping to specific attributes within an
extension set will be defined by the extension set
definition, and are outside the scope of this part of
IS0 8571.

9a.2.2 Attribute value

The value of an attribute value assertion is either a
pattern describing one or more possible values of the
attribute (see 9a.l), or the indication “no value
available”.

9a.2.3 Attribute relationship

The attribute value assertion relationships defined in
9a.l are defined in some subset of the terms
“equality“, “greater than”, and “less than”.

Where only the “equality” relationship is provided, the
files protocol provides means for the negation of the
attribute value assertion, resulting in the ability to
identify an object pathname based on it’s “inequality”
to a specified attribute pattern.

Where the “greater than” and “less than” relationships
are also provided, combinations of the relationships
may be expressed to form new relationships by taking
the logical “or” result of the truth value of each of the
relationships individually. Table 1 b shows the allowed
combinations of the relationships, and the resulting
relationships.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8571-2:1988/Amd 1:1992
https://standards.iteh.ai/catalog/standards/sist/bb85f63a-c3fa-44b5-a8af-

08d3d8a420e4/iso-8571-2-1988-amd-1-1992

	Üßúl��è,>9Ìçﬁ(h¬ï¶¾_Î˙(�˚™q½^"‘ł�<a«�eh¿Íµ"Ç:ï¿ﬂà§�O˘)jÔó¤ü)ÛÍiåHû2{f’¢(´¦t%!&y“„L¿�æ'YNBø�ŁêaWÆiõ�w(aÇdªÿT©lÑA|

