Explanatory notes on ISO 281/1-1977

Notes explicatives sur I'ISO 281/1-1977

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with/SO, also take part in the work.

The main task of ISO technical committees is toprepare Internationál Standards. In exceptional circumstances a technical committee may propose the publication of a technical report of one of the following types :

- type 1, when the necessary support within the technical committee cannot be obtained for the publication of an International Standard, despite repeated efforts; ards. iteh.ai/catalog/standards/sis/f6307afe-9be7-420f-alb3-
e2e62214c153/iso-tr-8646-1985
- type 2, when the subject is still under technical development requiring wider exposure;
- type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example).

Technical reports are accepted for publication directly by ISO Council. Technical reports types 1 and 2 are subject to review within three years of publication, to decide if they can be transformed into International Standards. Technical reports type 3 do not necessarily have to be reviewed until the data they provide is considered no longer valid or useful.

ISO/TR 8646 was prepared by Technical Committee ISO/TC 4, Rolling bearings.
The reasons which led to the decision to publish this document in the form of a technical report type 3 are explained in the introduction.

Contents

Page

1. Introduction 1
2. Brief History 1
2.1 ISO/R281-1962 1
2.2 ISO 281/I-1977 2
3. Basic Dynamic Load Rating 4
3.1 Basic dynamic radial load rating C_{r} for radial ball bearings 5
3.2 Basic dynamic axial load rating Ca for single row thrust ball bearings 10
3.3 Basic dynamic axial load rating C_{a} for thrust ball bearings with two or more rows of balls 13
3.4 Basic dynamic radial load rating C_{r} for radial roller bearings 15
3.5 Basic dynamic axial load rating C_{a} for single row thrust roller bearings 17
3.6 Basic dynamic axial load rating C_{a} for thrust roller bearings with two or more rows of rollers 19
4. Dynamic Equivalent Load 23
4.1 Formulae of dynamic equivalent load 23
4.1.1 Theoretical dynamic equivalent radial load $P r$ for single row radial bearings 23
4.1.2 Theoretical dynamic equivalent radial load Pr for double row radial bearings 27
4.1.3 Theoretical dynamic equivalent radial load Pr for radial contact groove ball bearings 32
4.1.4 Practical formulae of dynamic equivalent radial load $P r$ for radial bearings with constant contact angle 34
4.1.5 Practical formulae of dynamic equivalent radial load Pr for radial ball bearings 37
4.Ii.6elpractical formulae of dynamic equivalent axíataload P a for thrist bearings 39
4.2 Factors X, Y and e 41
4.2.1 Radial ball bearings 41
 radial ball bearings 43
4.2.3 Sumarized table of factors X, Y and e for radial ball bearings 48
4.2.4 Calculated values Y and e different from Standard 50
4.2.5 Thrust ball bearings 51
4.2.6 Radial roller bearings 52
4.2.7 Thrust roller bearings 54
5. Basic Rating Life 55
6. Life Adjustment Factor for Reliability 57
Symbols 59
References 63

iTeh STANDARD PREVIEW
 (St timpagearinentionativerter bilank

ISO/TR 8646:1985
https://standards.iteh.ai/catalog/standards/sist/f6307afe-9be7-420f-alb3-e2e62214c153/iso-tr-8646-1985

1. Introduction

This Technical Report gives supplementary background information regarding the derivation of formulae and factors given in ISO 281/I, Rolling bearings - Dynamic load ratings and rating life - Part I : Calculation methods.

2. Brief History

2.1 ISO/R281-1962

A first discussion on an international level of the question of standardizing calculation methods for load ratings of rolling bearings took place at the 1934 conference of the International Federation of the National Standardizing Associations (ISA). When ISA held its last conference in 1939 no progress had been made. However, in its 1945 report on the state of folimgabeaninglstahardization, the ISA 4 Secretariat included pfoposalsfor definition of concepts being funçantalifortoadarating andelifellcalculation standards. This report was distributed in 1949 as document ISO/TC 4 (Secretariat-1)l, and the definitions it contained are in essence those given in ISO $281 / 1$ for the concepts "life" and "basic dynamic load rating".

In 1946, on the initiative of the Anti-Friction Bearing Manufacturers Association (AFBMA), New York, discussions of load rating and life calculation standards were started between bearing industries in U.S.A. and Sweden. Chiefly on the basis of results of scientific investigations by G. Lundberg and A. Palmgren, pubiished in 1947 [1]*, an AFBMA Standard "Method of Evaluating Load Ratings of Annular Ball Bearings" was worked out and published in 1949. On the same basis, the member body of Sweden presented in Feb., 1950 a first proposal to ISO, "Load Rating of Ball Bearings", doc. ISO/TC 4/SC 1 (Sweden-1)I.

[^0]In view of results of further research, of a modification of the AFBMA Standard in 1950, and of the interest also in roller bearing rating standards, the member body of Sweden submitted in 1951 a modified proposal for rating of ball bearings, doc. ISO/TC 4/SC 1 (Sweden-6) 20, as well as a proposal for rating of roller bearings, doc. ISO/TC 4/SC 1 (Sweden-7) 21.

Load rating and life calculation methods were then studied by ISO/TC 4, ISO/TC 4/SC 1 and ISO/TC 4/WG 3 at eleven different meetings during 1951-1959. An additional paper by Lundberg-Plamgren published in 1952 [2] was of.considerable use, serving as a major basis for the sections regarding roller bearing rating.

The framework for the Recommendation was settled at TC 4/ WG 3 meeting inh ${ }^{1956}$. A At the time deliberation of the draft for revision of AFBMA Standards was concluded in U.S.A. and ASA B3 approved the revised standard. It was proposed to the meeting by U.S.A. and discussedsin detail, together with the
 prepared which adopted many parts of the U.S.A. proposal.

In 1957, Draft Proposal (doc. TC 4 N145) based on the WG proposal was issued. At the next year's WG3 meeting, this Draft Proposal was investigated in detail, and at the following TC4 meeting, the adoption of TC 4 N 145 , with some minor ammendments, was concluded. Then, Draft ISO Recommendation No. 278 as TC 4 N188 was issued in 1959, and ISO/R281 was accepted by ISO Council in 1962.

2.2 ISO 281/I-1977

In 1964 the member body of Sweden suggested that, in view of the development of improved bearing steels, the time had come
to review R281 and submitted a proposal, ISO/TC 4/WG3 (Sweden1) 9. However, at this time WG3 was not in favour of a revision.
In. 1969, on the other hand, TC 4 followed a suggestion by the member body of Japan (doc. TC 4 N627) and reconstituted its WG3, giving it the task of revising R281. The AFBMA load rating working group had at this time started to work on a revised standard, and the member body of U.S.A. submitted the Draft AFBMA Standard "Load ratings and fatigue life for ball bearings" for consideration, ISO/TC 4/WG3 (USA-I) 11, in 1970 and "Load ratings and fatigue life for roller bearings", ISO/TC4/WG3 (USA-3) 19, in 1971.

In 1972, TC 4/WG3 was reorganized and became - TC 4/SC8. This proposal was investigated in detail at the five meetings during 1971-1974. The final proposal, Third Draft Proposal (doc. TC 4/SC 8 N23), with some amendments, was circulated as Draft International standard in 1976 and ISO $281 /$ I was accepted by ISO Council in 1977.

The major part of this International Standard constitutes a re-edition of R281, the substance of which was only very slightly modified. However, basea mainly on American investigations during the 1960's, a new clause was added, dealing with adjustment of rating life for reliability other than 90% and for material and operating conditions.

Furthermore, supplementary background information regarding the derivation of formulae and factors given in ISO 281/I was to be published, preliminarily as ISO $281 /$ II Explanatory Notes In 1979, however, TC 4/SC 8 and TC 4 decided to publish it as Technical Report.

3. Basic Dynamic Load Rating

The background of basic dynamic load ratings according to the standard ISO 281 of rolling bearings is in the Lundberg and Palmgren papers listed as references [1] and [2].

The formulae for calculation of basic dynamic load ratings of rolling bearings develop from a power equation that can be written as follows:

where S = probability of survival $\tau_{0}=$ maximum orthogonal subsurface shear stress $N=$ number of stress applications to a point on the raceway
$v=$ volume representative of the stress concentrationandards.iteh.ail)
$z_{0}=$ depth of the maximum orthogonal subsurface
https//stshearh stressandards/sist/f6307afe-9be7-420f-alb3-
$c, h=$ exponents determined experimentally
e = measure of life scatter, i.e. Weibull slope determined experimentally.

For "point" contact conditions (ball bearings) it is assumed that the volume (V) representative of the stress concentration in equation (3-1) is proportional to major axis of the projected contact ellipse (2a), the circumference of the raceway (2) and the depth (z_{0}) of the maximum orthogonal subsurface shear stress (τ_{0}):

$$
\begin{equation*}
v \sim a z_{0} \ell \tag{3-2}
\end{equation*}
$$

Substituting (3-2) into relationship (3-1):

$$
\begin{equation*}
\ln \frac{1}{S} \sim \frac{\tau_{0} c_{N} e_{a l}}{z_{0}{ }^{n-1}} \tag{3-3}
\end{equation*}
$$

"Line" contact was considered by Lundberg and Palmgren to be approached under conditions where the major axis of the calculated Hertz contact ellipse is 1,5 times the effective roller contact length:

In addition, b/a should be small enough to permit the introduction of the limit value of ab^{2} for b / a approaching 0 :

$$
\begin{equation*}
a b^{2}=\frac{2}{\pi} \cdot \frac{3 Q}{E_{o} \Sigma \rho} \tag{3-5}
\end{equation*}
$$

(for notation see 3.1).

3.1 Basic dynamic radial 1oad rating Cr for radial ball bearings (standards.itelh.ai)

From the Hertz's theory, the maximum orthogonal subsurface shear stress//hoand theildepth $/$ zo can be expressed in terms of a radial load freetile. 15 maximum 5 rolling element load $Q_{\text {max }}$ or a maximum contact stress $\sigma_{\max }$ and dimensions for the contact area between a rolling element and the raceways. The relationships are given as follows:

$$
\begin{aligned}
\tau_{0} & =T \sigma_{\max }, \\
z_{0} & =\zeta \mathrm{b}, \\
\mathrm{~T} & =\frac{(2 t-1) 1 / 2}{2 t(t+1)}, \\
\zeta & =\frac{1}{(t+1)(2 t-1) 1 / 2}, \\
\mathrm{a} & =\mu\left[\frac{3 Q}{E_{0} \sum \rho}\right] 1 / 3, \\
\mathrm{~b} & =v\left[\frac{3 Q}{E_{0} \sum \rho}\right]
\end{aligned}
$$

where $\sigma_{\text {max }}=$ maximum contact stress
$t \quad=a u x i l i a r y ~ p a r a m e t e r$
a = semimajor axis of the projected contact ellipse
b = semiminor axis of the projected contact ellipse
Q = normal force between a rolling element and the raceways
$E_{0}=$ modulus of elasticity
Ep = curvature sum
$\mu, v=$ auxiliary quantities introduced by Hertz.
Consequently, for a given rolling bearing $\tau_{0}, a_{\text {, }} 2$ and z_{0} can be expressed in terms of bearing geometry, load and revolutions. The relationship (3-3) is changed to an equation by inserting a constant of proportionality. Inserting a specific number of revolutions (e.g. 10^{6}) and a specific reliability (e.gFes9, the equation is solvedfor a rolling element load for basic dynamic load rating which is designated to point contact rolling bearings introducing a constant of proportionality A_{1} :

$$
\begin{aligned}
& \times\left(\frac{\gamma}{\cos \alpha}\right)^{\frac{3}{c-h+2}} \mathrm{D}_{\mathrm{w}} \frac{2 \mathrm{c}+\mathrm{h}-5}{c-h+2} z^{-\frac{3 e}{c-h+2}} \ldots \ldots
\end{aligned}
$$

where $Q_{C}=$ rolling element load for the basic dynamic load rating of the bearing
$\mathrm{D}_{\mathrm{w}}=$ ball diameter
$\gamma=D_{w c o s} \alpha / D_{p w}$
$D_{p w}=$ pitch diameter of ball set
$\alpha=$ nominal contact angle
$Z=$ number of balls per row.

[^1]The basic dynamic radial load rating C_{1} of a rotating ring is given as follows:

$$
\begin{equation*}
C_{1}=Q_{C I} Z \cos \alpha \frac{J r}{J_{1}}=0,407 Q_{C l} Z \cos \alpha \tag{3-7}
\end{equation*}
$$

The basic dynamic radial load rating C_{2} of a stationary ring is given as follows:

$$
C_{2}=Q_{c 2} Z \cos \alpha \frac{J_{r}}{J_{2}}=0,389 Q_{C 2} Z \cos \alpha \quad \ldots \ldots . .(3-8)
$$

where Qcl $=$ rolling element load for the basic dynamic load rating of a ring rotating relative to the applied load
$Q_{C 2}=$ rolling element load for the basic dynamic load
ilrating of a ring stationary relative to the applied load
$J_{r}=J_{r}(0,5)=$ radial load integral (see table 4-1)
$J_{1}=J_{1}(0,5)=$ factortrelating mean equivalent load
 table 4-1)
$J_{2}=J_{2}(0,5)=$ factor relating mean equivalent load on a stationary ring to Omax (see table 4-1).

The relationship among C_{r} for an entire radial ball bearing, C_{1} and C_{2} is expressed in terms of the product law of probability as follows:

$$
\begin{equation*}
c_{r}=c_{1}\left[1+\left(\frac{c_{1}}{c_{2}}\right)^{\frac{c-h+2}{3}}\right]-\frac{3}{c-h+2} \tag{3-9}
\end{equation*}
$$

Substituting equations (3-7), (3-8) and (3-6) into equation (3-9), the basic dynamic radial load rating C_{r} for an entire
ball bearing is expressed as follows:

$$
\begin{align*}
& C_{r}=0,41 \frac{1,3}{4^{\frac{2 c+h-2}{c-h+2}} 0,5^{\frac{3 e}{c-h+2}}} A_{1}\left[\frac{2 r_{j}}{2 r_{i}-D_{W}}\right]^{0,41} \frac{(1-\gamma) \frac{1,59 c+1,41 h-5,82}{c-h+2}}{(1+)^{\frac{3 e}{c-h+2}}} \\
& \text { x. } r^{\frac{3}{c-h+2}} \\
& \times\left[1+\left\{1,04\left(\frac{r_{i}}{r_{e}} \chi^{2} \frac{r_{i}-D_{i j}}{r_{i}-D_{i}}\right)^{0,41}\left(\frac{1-\gamma}{1+\gamma}\right) \frac{1,59 c+1,41 h+3 e-5,82}{c-h+2}\right\} \frac{c-h+2}{3}\right]-\frac{3}{c-h+2} \\
& x(i \cos \alpha)^{\frac{c-h-1}{c-h+2}} z^{\frac{c-h-3 e+2}{c-h+2}} D_{w}^{\frac{2 c+h-5}{c-h+2}} \tag{3-10}
\end{align*}
$$

where $A_{1}=$ proportionality constant determined experimentally $r_{i}=$ cross-sectionall faceway.groove radius of.inner ring $r_{e}=$ cros's-sectional raceway groove radius of outer ring i =humber of rows of balls.afe-9be7-420f-alb3-

Here, a contact angle α, number of rolling elements (balls) Z and the diameter D_{w} depend on bearing design. On the other hand, the ratios of raceway groove radii r_{i} and r_{e} to a half diameter of a rolling element (ball) $D_{w} / 2$ and $\gamma=D_{w} \cos \alpha / D_{p w}$ are not dimensional, therefore it is convenient in practice that the value for the first three lines in the right side of equation (3-10) is designated as a factor fc.

Consequently,

$$
\begin{equation*}
C_{I}=f_{C}(i \cos \alpha)^{\frac{c-h-1}{c-h+2}} z^{\frac{c-h-3 e+2}{c-h+2}} D_{w} \frac{2 c+h-5}{c-h+2} . \tag{3-11}
\end{equation*}
$$

With radial ball bearings we must consider the faults in bearings resulting from the manufacturing, and a reduction factor λ is introduced to reduce the value for a basic dynamic radial load rating for radial ball bearings from its theoretical value, and it is convenient to contain the factor λ in the factor f_{c}. The value for the factor λ is determined experimentally.

Consequently the factor f_{c} is given as follows:

$$
\begin{aligned}
& f_{c}=0,41 \lambda \frac{1,3}{4^{\frac{2 c+h-2}{c-h+2}} 0,5^{\frac{3 e}{c-h+2}}} A_{1}\left[\frac{2 r_{i}}{2 r_{i}-D_{w}}\right]^{0,41} \frac{(1-\gamma)^{\frac{1,59 c+1,41 h-5,82}{c-h+2}}}{(1+\gamma)^{\frac{3 e}{c-h+2}}} \\
& \times \gamma^{\frac{3}{c-\mathrm{B}+2}} \text { STANDARD PREVIEW } \\
& \text { (standards.iteh.ai) }
\end{aligned}
$$

Based on the original experimental work by Lundberg and Palmgren with ball bearings the following values were assigned to the experimental constants in the load rating equations:

$$
\begin{aligned}
& \mathrm{e}=10 / 9 \\
& \mathrm{c}=31 / 3 \\
& \mathrm{~h}=7 / 3
\end{aligned}
$$

Substituting the numerical values into equation (3-11) gives the following, however, a sufficient number of test results
are only available for small balls; i.e. up to a diameter of about 25 mm , and these show that the load rating may be taken as being proportional to $D_{w} 1,8$. In the case of larger balls the load rating appears to increase even more slowly in relation to the ball diameter, and $D_{w}{ }^{1}, 4$ can be assumed where $D_{\mathrm{W}}>25,4 \mathrm{~mm}:$

$$
\begin{align*}
& C_{r}=f_{C}(i \cos \alpha)^{0,7} Z^{2 / 3} D_{W} 1,8 \quad\left(D_{w} \leqslant 25,4 \mathrm{~mm}\right), \ldots(3-13) \\
& C_{r}=3,647 E_{C}(i \cos \alpha)^{0,7} z^{2 / 3} D_{W} 1,4\left(D_{W}>25,4 \mathrm{~mm}\right), \ldots(3-14) \\
& f_{c}=0,089 A_{1} \times 0,41 \lambda\left[\frac{2 r_{i}}{2 r_{i}-D_{W}}\right]^{0,41} \frac{\gamma^{0,3(1-\gamma) 1,39}}{(1+\gamma)^{17}} \\
& \times\left[1+\left\{1,04\left(\frac{1-\gamma}{1+\gamma}\right)^{1,72}\left(\frac{r_{i}}{I_{e}} \times \frac{2 r_{e}-\Sigma_{w_{N}}}{2 r_{i}-D_{W}}\right)^{0,41}\right\}^{10 / 3}\right]-3 / 10 . \tag{3-15}
\end{align*}
$$

iTeh STANDARD PREVIIE
Values for f_{c} on tabianilin (fsoit281, ril)are calculated from substituting raceway groove radius and reduction factor which are given in table 3-1 intonequatione (3-15). $163-$

3.2 Basic dynamic axial load rating Ca for single row thrust ball bearings

3.2.1 Thrust ball bearing with contact angle $\alpha \neq 90^{\circ}$

Similarly according to 3.1, for thrust ball bearings with contact angle $\propto \neq 90^{\circ}$:

$$
\begin{equation*}
C a=f_{c}(\cos \alpha)^{\frac{c-h-1}{c-h+2}} \tan \alpha z^{\frac{c-h-3 e+2}{c-h+2}} D_{w} \frac{2 c+h-5}{c-h+2} . \tag{3-16}
\end{equation*}
$$

For most thrust ball bearings the theoretical value of a
basic dynamic axial load rating must be reduced on the basis of unequal distribution of load among the rolling elements in addition to the reduction factor λ which is introduced in radial ball bearing load ratings. This reduction factor is designatea as η.

Consequently, the factor f_{c} is given as follows:

$$
\begin{aligned}
& f_{c}=\lambda \frac{1,3}{4^{\frac{2 c+h-2}{c-h+2}} 0,5^{\frac{3 e}{c-h+2}}} A_{1}\left[\frac{2 r_{j}}{2 r_{i}-D_{w}}\right]^{0,41} \frac{(1-\gamma)^{\frac{1,59 c+1,41 h-5,82}{c-h+2}}}{(1+\gamma)^{\frac{3 e}{c-h+2}}} \gamma^{\frac{3}{c-h+2}}
\end{aligned}
$$

Substituting experimental constants $e=10 / 9, c=31 / 3$ and
 ing the effect of ball size similarly,

$$
\begin{aligned}
& C a=f_{c}(\cos \alpha)^{0,7} \tan \alpha z^{2 / 3} D_{w}{ }^{1,8} \quad\left(D_{w} \leqslant 25,4 \mathrm{~mm}\right), \ldots(3-18) \\
& \mathrm{Ca}=3,647 \mathrm{f}_{\mathrm{C}}(\cos \alpha)^{0,7} \tan \alpha \mathrm{z}^{2 / 3} \mathrm{D}_{\mathrm{w}} 1,4(\mathrm{Dw}>25,4 \mathrm{~mm}) \ldots(3-19) \\
& f_{C}=0,089 A_{1} \lambda \eta\left(\frac{2 r_{1}}{2 r_{i}-D_{W}}\right)^{0,41} \frac{\gamma^{0,3(1-\gamma)^{1}, 39}}{(1+\gamma)^{1 / 3}} \\
& x\left[1+\left\{\left(\frac{r_{i}}{r_{e}} \times \frac{2 r_{e}-D_{w}}{2 r_{i}-D_{w}}\right)^{0,41}\left(\frac{1-\gamma}{1+\gamma}\right)^{1,72}\right\}^{10 / 3}\right]^{-3 / 10} .
\end{aligned}
$$

[^0]: * figures in brackets indicate literature references in References.

[^1]: (x is used as multiplication symbol.)

