INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
MEXXOYHAPOAHAA OPTAHU3ALMA NO CTAHLAPTU3ALIMK

Information processing systems —
Computer graphics — Graphical Kernel
System (GKS) language bindings —

Part 1:
FORTRAN

Systémes de traitement de.l’information, —.Infographie, —. Systéme graphique-de base (GKS)
— Interface langage —

Partie 1 : FORTRAN

ISO
8651-1

First edition
1988-04-15

Reference number
1SO 8651-1:1988 (E)

ISO 8651-1: 1988 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of
national standards bodies (ISO member bodies). The work of preparing International
Standards is normally carried out through ISO technical committees. Each member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with 1SO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to
the member bodies for approval before their,acceptance as International Standards by
the 1ISO Council. They are approved in accordance with /SO procedures.requiring at
least 75 % approval by the member bodies voting.

International Standard 1SO 8651-1 was prepared by Technical Committee ISO/TC 97,
Information processing systems.

Users should note that all International Standards undergo revisiom from, time to| time
and that any reference made herein to any other International Standard implies its
latest edition, unless otherwise stated.

2 International Organization for Standardization, 1988 @

Printed in Switzerland

ISO 8651-1:1988 (E)

Contents
Page
0 Introduction eeteetteeeserenteeeretsttsssensessasessesterttassnarnsrannans 1
1 Scope and field of application.....ccccceeeeeses ceeereesseneteresssannanenns veee2
2 RO T EIICES ceeeeeereerenenssessssressesnsssassasssssssssssnssssssssssssssssssensessssssssssssssssssssssssssssssesssssssssssnssesensassssssssssssss 3
3 The FORTRAN language binding of GKS................. cevenes ceessesseseannes cerrasnnns wed
3.1 Specification....ccccereeeenneenacancainnnececesisiiisissssissssiinnnnns cerenneeneenns 4
3.2 Mapping of GKS function names to FORTRAN subroutme DAINES eeeeeereverereesesssonsnonnes 4
3.3 Parameters...... cesenssrennasnsssesessasasers cesesesessrssssnens ceeeeesasnusensessssnssnssens cessnns 4
3.4 The FORTRAN subset.....cccceceeeenncccirnenencncnccenns

3.5 Error handling

4 Generating FORTRAN subroutine names
b Data types
6 Enumeration types .
7 Lists of the GKS function names....cccceeeeceerenciiianncinrencncecense teesserenterentserarasteransssennsesaesissanasssarsenses 16
7.1 List ordered alphabetically by bound name......ccceeeeeniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeesesessis 16
7.2 ¢ rListjordered alphabetically by ;IGKS function;name:.w 5 siceessssneiesscannens crresssssensnnns ceereennesane 19
7.8 " ‘List ordered alphabetically by bound name within Jevelccccccovveeiieireirinnnineniiniccniiinnaees
8 GKS errors specific to the FORTRAN binding......ccceceeueeeerces .
9 The GKS function ‘interface......cc..lscie SARABLL.....coueeiniininennne
9.1 General principles....... ereessssennarsttennesssseennes ceesesseannnnnnnn ceesesssssssnnnsanans
9.2 Control functions .ici.cssisesiesssssnsececessaecscsassscssisreecans ceessessiseststnnisissnstntnnssssanantatssisennsnnassnnen 29
9.3, Output functions ro s T oA LS ST E SO IR S S e R A s eases creee
9.4 Output attributes......cocsrereerresssnresnessarssnsssaensenesseessaiancnsosansscess .
9.4.1 Workstation independent prumtlve attributescceeeeeeeeeennennnnnniinne
9.4.2 Workstation attributes (representations)......ccccceeeceeeeeccueevnecscraneens
9.6 Transformation functions tesssesssteneneesssssssssnaranttaatsetanesessssssannane
9.5.1 Normalization transformation teeseeseessernnressesnesnaansissesennns
9.5.2 Workstation transformation......cceccceeccsiiiiiioiiniinacnnnnccecnecencee.
9.6 Segment fUNCHiONS...ccviiiiiirenrereeriieeiiiiiirrneniiieieiiiissieenentnteeeieeenee
9.6.1 Segment manipulation functionscccceeeueeeeee eesssessetssantsnssastsaannsssssnansnnssssasannananes
9.6.2 Segment attributescccceeeeeeeiiiinrnnneeiiiiiiiiiiiiiniininenee.
9.7 Input functions......cccceeveceieciirnerrencsenieissniisssssnsnisssssseeeiscssnnneesicnns
9.7.1 Initialisation of input devxces crseeesssserssnananes cevnees
9.7.2 Setting mode of input devices....... ceneesennes eenen
9.7.3 Request input functionsc.cccerrenmeriiiiiicisiininnnsnnnnceiniiiiiiciinisninntniiiiisinssieaeseeseeneean
9.7.4 Sample input functions........ errsseesessnnenne
9.7.56 Event input functions.......ccccccececceiirirennniciiennnesiciineenncens
9.8 Metafile functions esessseetassnennssessnsannenens
9.9 Inquiry functions........cccceceeeeeereiissisnsnnensiiecssissessenenncnnesnieieesssisssssennnsanes
9.9.1 Inquiry function for operating state value
9.9.2 Inquiry functions for GKS description table -
9.9.3 Inquiry functions for GKS state listcccoeeruunnuaaananins .
9.9.4 Inquiry functions for workstation state list....... eeeeeesesessssssensanasasessssssesrnnsansesssnessssessns 66
9.9.5 Inquiry functions for workstation description table ceeeeenes 76
9.9.8 Inquiry functions for segment state List c..ceeiireeniiiiiinnniiiiniiinnniiecitieennnieeeieteneesneeee 88
9.9.7 Pixel Inquiries.......cccovseeerineicreeninnnisseniesseiesssnnisssarisscnesisssissenessnssens ceseesssssseanennsnanses 88
9.9.8 Inquiry function for GKS error state hst erreresssseeseranenesenenns 89
9.10 Utility functions craseene . cresescrsensssennes 90
9.11 Error handlingccccccieeenneeennceceeennnnccecesnntsnssscerncecsssssssssssssssenssssssssssasssssssssssssessssssseanes cerenee 90
9.12 Utility functions not defined in GKS...cciiiiiiiiiiinninnnnnnitiiiiiecicinnninnniiiiiicsisnssisenneecceeenienesses 91
Annexes
A FORTRAN examples ceeseesesessesansssrensstsasssensssanenessansisssrrtstsatresssnsssennrssnn 94
B Metafile Item Types eeeetesesertsniterassssstssssstsnstersnsstanseantsetatrtetttsesasntesasnssstrrsseasnrnesananas 115

iTeh STANDARD PREVIEW
(i el téntion et Blarik

ISO 8651-1:1988
https/standards.iteh.ai/catalog/standards/sist/f6518719-c814-4551-a7d5-
9a1957¢6968a/is0-8651-1-1988

INTERNATIONAL STANDARD ISO 8651-1 : 1988 (E)

Information processing systems —
Computer graphics — Graphical Kernel
System (GKS) language bindings —

Part 1 :
FORTRAN

0 Introduction

The Graphical Kernel System (GKS), the functional description of which is given in ISO 7942, is
specified in a language independent manner and needs’to be 'embedded in language dependent
layers (language bindings) for use with particular programming languages. The purpose of this
part of ISO 8651 is to define a standard binding for the FORTRAN computer programming
language.

ISO 8651-1:1988 (E)

1 Scope and field of application

ISO 7942 (GKS) specifies a language independent nucleus of a graphics system. For integration
into a programming language, GKS is embedded in a language dependent layer obeying the par-
ticular conventions of that language. This part of ISO 8851 specifies such a language dependent
layer for the FORTRAN language.

ISO 8651-1:1988 (E)

2 References

ISO 7942, Information Processing - Computer graphics - Graphical Kernel System (GKS) func-
tional description.

ISO 1539, Programming Languages - FORTRAN.

ISO 8651-1:1988 (E)

3 The FORTRAN language binding of GKS

3.1 Specification

The GKS language binding interface for ISO FORTRAN 77 (ISO 1539) shall be described as in
clauses 3, 4, 5,6, 7, 8, and 9.

3.2 Mapping of GKS function names to FORTRAN subroutine names

The function names of GKS are all mapped to FORTRAN subroutine names which start with the
letter G. The mapping is generally done in a one-to-one correspondence to ISO 7942. However,
some inquiry functions are split into more than one subroutine in this binding, due to the number
of parameters required. The remaining letters after the first one are obtained by deriving a unique
acronym from the words of the function name; e.g., ACTIVATE becomes AC, WORKSTATION
becomes WK. Hence, the FORTRAN subroutine name of GKS function ACTIVATE WORKS-
TATION is GACWK. For a list of all abbreviations, see clause 4. Names used internally which
may be known outside GKS, e.g., during linking, start with some easily recognized and docu-
mented form such as GK (subroutine, function, and common block names). Therefore, no exter-
nal names starting with this construct should be chosen when using GKS, in order to avoid name
conflicts. Globally used GKS names may be renamed if necessary.

3.3 Parameters

In general, the order of GKS function parameters jis preserved. For some subroutines, however,
there are additional parameters which have been inserted in.the normal parameter sequence (e.g.,
array length for arrays which are output parameters):

Values of input parameters are unaltered by any GKS function, by PACK DATA RECORD, or
by UNPACK DATA RECORD.

In order that the application program may inquire any element of a list (member of a set), such
as the set of segment names, in this binding the inquiry functions return only a single element of
a list (member of a set). In addition, the total number of elements of the list (members of the
set) is always returned. The elements (members) are numbered starting from 1; each invocation
of the inquiry function requires the desired element (member) number as an input parameter and
returns the corresponding element (member). When the list (set) is empty, a zero is returned as
the number of elements (members) and the parameter representing the single element in the list is
undefined.

3.4 The FORTRAN subset

The binding for FORTRAN 77 Subset is different from that for full FORTRAN 77 in order to
accommodate the FORTRAN 77 Subset restrictions.

Those GKS subroutines in the full FORTRAN 77 binding that have arguments of type CHAR-
ACTER*(*) have alternative subroutine definitions that include fixed length character strings,
CHARACTER*80, for the Subset.

In some cases, an additional INTEGER parameter (the number of characters) appears in the
parameter list and the Subset version is distinguished by the addition of a final S, so that the two
versions can coexist in the same implementation. In other cases the INTEGER parameter is

ISO 8651-1:1988 (E)

already present and the FORTRAN 77 Subset version has the same name as the full FORTRAN

77 version.
A full FORTRAN 77 implementation shall include both subroutines in the case when the names
are distinct and only the full FORTRAN 77 version when the names are the same.

The enumeration values in this binding may be redefined for the Subset by replacing the
PARAMETER statements with corresponding DATA statements.

3.5 Error handling

There are two error routines in every GKS system, named GERLOG and GERHND. The user
may replace the latter with his own subroutine using the same name, GERHND, and calling
sequence. Furthermore, this user-defined error routine may call the system-defined error logging
procedure GERLOG.

ISO 8651-1:1988 (E)

4 Generating FORTRAN subroutine names

For the binding of the GKS functions which inquire lists (sets), the word element (member) is
added to the GKS function name before the subroutine name is generated from the resulting
terms.

The derivation of the abbreviation for the subroutine names is performed in several steps. First,
plurals are reduced to their singular form, and grammatical derivations are unified. Next, some
compound terms are reduced. Finally, each remaining word is replaced by the null string or by
an abbreviation.

Plurals

ATTRIBUTES -~ ATTRIBUTE NUMBERS - NUMBER
DEVICES - DEVICE PRIMITIVES - PRIMITIVE
EVENTS - EVENT PRIORITIES - PRIORITY
FACILITIES - FACILITY SEGMENTS - SEGMENT

FLAGS - FLAG TYPES - TYPE

INDICES - INDEX VALUES - VALUE

NAMES - NAME WORKSTATIONS - WORKSTATION
Keeping Uniqueness

ACTIVE - ACTIVATE

DRAWING - DRAW

IDENTIFIER - [IDENTIFICATION

SPACING - SPACE

Reduce Compound Terms:

STATE TABLES - TABLES

TRANSFORMATION NUMBER -~ TRANSEORMATION N

SET member = - member

CURRENT NORMALISATION - ON

MAXIMUM LENGTH - LENGTH

Deletions

ALL FACTOR LIST OF TABLES
AND FROM member ON TO
AVAILABLE GKSM MODIFICATION POINT TYPE
CURRENT IN MORE SIZE VALUE
DATA INDICATOR NAME STATES VECTOR
DEVICE LENGTH NUMBER SUPPORTED WITH
EVENT

Abbreviations

ACCUMULATE
ACTIVATE
ALIGNMENT
AREA

ARRAY
ASPECT
ASSOCIATE
ASSOCIATED
ATTRIBUTE
AWAIT

BASE
CATEGORY
CELL
CHARACTER
CHOICE
CLASSIFICATION
CLEAR
CLIPPING
CLOSE
COLOUR
CONNECTION
COPY
CREATE
DEACTIVATE
DEFAULT
DEFERRAL
DELETE
DETECTABILITY
DIMENSIONS
DISPLAY
DRAW
DYNAMIC
element
EMERGENCY
ERROR
ESCAPE
EVALUATE
EXPANSION
EXTENT
FACILITY
FILL

FLAG

FONT
GENERALISED
GET

GKS
HANDLING
HEIGHT
HIGHLIGHTING
IDENTIFICATION
INDEX
INITIALISE
INPUT
INQUIRE
INSERT
INTERIOR
INTERPRET
ITEM

LINE

ITM
LN

LINETYPE
LINEWIDTH
LOCATOR
LOGGING
LOGICAL
MARKER
MATRIX
MAXIMUM
MESSAGE
MODE
NORMALIZATION
OPEN
OPERATING
OVERFLOW
PACK

PATH
PATTERN
PICK

PIXEL
POLYLINE
POLYMARKER
PRECISION
PREDEFINED
PRIMITIVE
PRIORITY
QUEUE

READ

RECORD
REDRAW
REFERENCE.
RENAME
REPRESENTATION
REQUEST
SAMPLE

SCALE
SEGMENT
SELECT

SET
SIMULTANEOUS
SOURCE
SPACE

STATE

STRING
STROKE

STYLE
SURFACE
TEXT
TRANSFORMATION
UNPACK
UPDATE

USE
VALUATOR
VIEWPORT
VISIBILITY
WIDTH
WINDOW
WORKSTATION
WRITE

REC

RF
REN

RQ
SM
sC
SEL

SIM

VIS

ISO 8651-1:1988 (E)

ISO 8651-1:1988 (E)

5 Data types

In ISO 7942, parameters of several types are used. The following shows the correspondence
between the types used in ISO 7942 and their realisation in a FORTRAN implementation.

FORTRAN Data Types
INTEGER
REAL

GKS Data Type
I integer

R real

S string

P point

N name

E enumeration

1)

2)

In a full FORTRAN 77 subroutine:

a) INTEGER containing the number of characters returned (for out-
put string argument only)

b) CHARACTER*(*) containing the string. In addition, if a charac-
ter string which is an input parameter may reasonably contain no
characters, then an INTEGER (=0) is used to give the number of
characters to be passed to the subroutine.

In a FORTRAN 77 Subset subroutine:

a) INTEGER containing the number of characters passed to the sub-
routine (for input string only, i.e. only one INTEGER needed for
output).

b) INTEGER containing the number of characters returned (for out-
put stringargument only).

¢) CHARACTER*80 containing the string.

REAL, REAL containing the X-"and"Y-values
INTEGER

1)

Workstation Identifier, Segment Name, -Pick Identifier;, An implemen-
tation may restrict,the range but. must.at least provide all non-
negative integers which are available at that implementation.

NOTE - the default value for pick identifier is zero.

2) Workstation Type, Connection Identifier, Error File: The set of valid
values is implementation dependent. The Connection Identifier and
Error File may be logical unit numbers.

3) GDP Identifier, Escape Identifier: The set of legal values is described
in ISO 7942.

4) Identification of GKS procedure: The range is shown under
‘Enumeration Types’.

INTEGER

NOTE - All values are mapped to the range zero to N-1, where N is the number of

enumeration alternatives. Except for null values, the order of the enumeration alter-

natives is the same as in ISO 7942: null values always appear in the first position. If

the integer value given by the application program is not in the range 0 to N-1,

there is a language binding error condition (error 2000).

const x simple_type where simple_type is I or R (vector of values, for example 2xR)

1) In non-inquiry functions, separate simple_type parameters are used.

NOTE - in GKS, const =4

2) In inquiry functions, if const =<3, separate simple_type parameters are

used; if const =4, a simple_type array of dimension const is used.

ISO 8651-1:1988 (E)

const x P (only occurs in non-inquiry functions)
Separate REAL parameters, with the X- and Y- coordinates of one point
being followed by the X- and Y- coordinates of the next.

const x E (only occurrence in GKS is const = 13)
An array of INTEGER elements of dimension const is used, each element
being an enumeration alternative.

const 1 x const 2 x R (matrix of values, for example 2x3xR)
REAL array (const 1, const 2)

list of n values of one simple_type (for example nxI)
1) For input parameter:

a) INTEGER (input parameter) containing length n of the list (unless
the length is already present as a separate GKS parameter, in which
case it is not duplicated)

b) array of dimension n, whose elements are of the appropriate
simple_type.

When the length could legally be zero within GKS, the binding indi-
cates the array dimension by *. The implementation checks that
the given length is =0.

2) For output parameter in non-inquiry functions:
a) INTEGER (input parameter) containing the dimension of the array

b)) INTEGER\(output parameter) containing the number of elements of
the array actually used.

c) an array whose elements ‘are ‘of the appropriate simple_type. The
input dimension being too small is a language binding error condi-
tion (error 2001):

In both ‘cases)(input ‘or output), where the simple_type is a point,
there is a REAL array for the X-coordinates and another for the Y-
coordinates.

3) For inquiry functions, a single call returns a single element of the list.
For a complete list of length n,

a) INTEGER (input parameter) containing the sequence number of
required list element (in the range 0...n).

b) INTEGER (output parameter) containing the number of items in
the list n.

c) a parameter of the appropriate simple_type containing the requested
element. :

If the sequence number given is 0, the requested element returned is
undefined, but an error is not indicated thereby; the number of
items in the list n is returned. If the sequence number given is <0
or >n, then error 2002 is indicated, the number of items in the list
is returned, but the requested element is undefined; the exception to
this is when the list size is 0, and in that case an error is not indi-
cated thereby.

4) A complete inquired list is returned from a single call when the max-
imum size of the list is a small constant m:

a) INTEGER (output parameter) containing the number of elements of
the array actually used.

ISO 8651-1:1988 (E)

b) an array of dimension m, whose elements are of the appropriate
simple_type.
list of n values of a compound type (for example, nx4xR)
This only occurs in an inquiry function. A single call returns a single ele-
ment of the list exactly as for the list of values of one simple_type, except
that here the requested element is several FORTRAN parameters.

array of integers (for example, nxnxI)
This is described more fully below, where the representations of CELL
ARRAY, PIXEL ARRAY and PATTERN ARRAY are described.

an ordered pair of different types (for example L;E)
The different types are represented in turn in the FORTRAN parameter
list.

DATA RECORD Represented as a set of scalar values and an array of type CHARAC-
TER*80 containing the data. In addition, an INTEGER input parameter
is used to dimension the array. Where the data record is an output
parameter, an additional argument ‘number of array elements of data
record occupied’ is needed. There are no scalar values except where the
data record contains values which are compulsory in GKS.

Although data can be read from and written into the data record with the
FORTRAN READ and WRITE statements, special utility functions are
defined to pack INTEGER, REAL, and CHARACTER data into the data
record and Jto Sunpack ‘the data, record to! ‘the individual data items
(GPREC, GUREC). The content of the packed data records is implementa-
tion dependent, but. GPREG must perform!the inverse function to GUREC
and vice versa.

The representation of CELL ARRAY, PIXEL ARRAY, and‘PATTERN allows the user of the
routines requiring a cell array parameter to-pass’any portion of the array as an'argument. Two
examples should make this clear.

The user can pass an entire two-dimensional array. In this case the number of columns of the cell
array is the same as the first dimension of the FORTRAN array:

INTEGER DIMX, DIMY, CELLS (DIMX,DIMY)
CALL GCA (X1, Y1, X2, Y2, DIMX, DIMY, 1, 1, DIMX, DIMY, CELLS)

(01) 1) 3.1) . (DIMX1)
(1.2) (2.2) (3.2) .. (DIMX.2)
(1,DIMY) (2,DIMY) (3,DIMY) ... (DIMX,DIMY)

To use an arbitrary portion of an array the user passes the upper left corner of the portion as the
starting address and the dimensions of the entire array for the proper treatment of addresses. The
area inside the small box is the cell array being passed:

INTEGER STARTX, STARTY, DX, DY, DIMX, DIMY, CELLS (DIMX,DIMY)
DATA STARTX/3/, STARTY/8/, DX/2/, DY/3/
CALL GCA (X1,Y1,X2,Y2,DIMX,DIMY,STARTX,STARTY,DX,DY,CELLS)

10

Ly @) 6D @) (DIMX, 1)
L2 @) 62 (4 (DIMX 2)
L @8 | 68 e (DIMX.6)
o e@n | 6n @ (DIMX 7)
(1,8) (2,8) (3,8) (4,8) (DIMX,8)
(1,DI:NIY) (2,D1:1\/IY) (3,DI:1\IIY) (4,DI:1\'IY) (DHVIX,:DI]\'IY)

ISO 8651-1:1988 (E)

11

	â�v˜TPdî=Ä�${˘C>/ãeçqJ¸c�œf�;+x¨VQ.»�e¦ï`w_—H. o�F4ÇûN×–�›~Š•Ò-òˇšÃO

