Edition 1.0 2007-12 # INTERNATIONAL STANDARD ## THIS PUBLICATION IS COPYRIGHT PROTECTED ## Copyright © 2007 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. ## **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Rease make sure that you have the latest edition, a corrigenda or an amendment might have been published. ■ Catalogue of IEC publications: <u>www.iec.ch/searchpub</u> The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications. ■ IEC Just Published: www.iec.ch/online news/justpub Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email. ■ Electropedia: <u>www.electropedia.org</u> The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online. Customer Service Centre: www.ies.ch/webstore/custser If you wish to give us your feedback on this publication of need further assistance, please visit the Customer Service Centre FAQ or contact us: Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00 Edition 1.0 2007-12 # INTERNATIONAL STANDARD Industrial communication networks - Fieldbus specifications - Part 6-3: Application layer protocol specification - Type 3 elements INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE ICS 35.100.70; 25.040.40 ISBN 2-8318-9475-1 ## CONTENTS | FC | REWO | ORD | 8 | |----|-------|---------------------------------------------------------------------------|----| | IN | TRODU | JCTION | 10 | | 1 | Scop | e | 11 | | | 1.1 | General | 11 | | | 1.2 | Specifications | 12 | | | 1.3 | Conformance | 12 | | 2 | Norm | native references | 12 | | 3 | Term | is, definitions, abbreviations, symbols and conventions | | | | 3.1 | Referenced terms and definitions | 13 | | | 3.2 | Additional definitions | 14 | | | 3.3 | Abbreviations and symbols | | | | 3.4 | | 19 | | | 3.5 | Conventions used in state machines | 21 | | 4 | FAL | syntax description | 24 | | | 4.1 | APDU abstract syntax | | | | 4.2 | Data typessfer syntax | 28 | | 5 | Trans | sfer syntax | 30 | | | 5.1 | Coding of basic data types. | 30 | | | 5.2 | Coding section related to data exchange PDUs | | | | 5.3 | Coding section related to slave diagnosis PDUs | 33 | | | 5.4 | Coding section related to parameterisation PDU | | | | 5.5 | Coding section related to configurationPDUs | | | | 5.6 | Coding section related to global control PDUs | | | | 5.7 | Coding section related to clock-value-PDUs | | | | 5.8 | Coding section related to function identification and errors | | | | | Coding section related to master diagnosis PDU | | | | 5.10 | Coding section related to upload/download/act para PDUs | | | | 5.11 | Coding section related to the bus parameter set | | | | | Coding section related to the slave parameter set | | | | | Coding section related to statistic counters | | | | | Coding section related to set slave address PDU | | | | 5.16 | | | | | | Coding section related to load region and function invocation PDUs | | | | | Examples of diagnosis-RES-PDUs | | | | | Example of Chk_Cfg-REQ-PDU | | | | | Examples of Chk_Cfg-REQ-PDUs with DPV1 data types | | | | | Example structure of the Data_Unit for Data_Exchange | | | 6 | | protocol state machines | | | | 6.1 | Overall structure | | | | 6.2 | Assignment of state machines to devices | | | | 6.3 | Overview DP-slave | | | | 6.4 | Overview DP-master (class 1) | | | | 6.5 | Overview DP-master (class 2) | | | | 6.6 | Cyclic communication between DP-master (class 1) and DP-slave | | | | 6.7 | Acyclic communication between DP-master (class 2) and DP-master (class 1) | | | | 6.8 | Acyclic communication between DP-master (class 1) and DP-slave | 92 | | 6. | 9 Application relationship monitoring | 94 | |--------|-----------------------------------------------------------------------------------------|-----| | 7 AI | P-context state machine | | | 8 F/ | AL service protocol machines (FSPMs) | 99 | | 8. | | | | 8. | | | | 8. | 3 FSPMM2 | 170 | | 9 A | oplication relationship protocol machines (ARPMs) | 189 | | 9. | 1 MSCY1S | 189 | | 9. | 2 MSAC1S | 221 | | 9. | 3 SSCY1S | 234 | | 9. | 4 MSRM2S | 238 | | 9. | 5 MSAC2S | 243 | | 9. | 6 MSCS1S | 260 | | 9. | 7 MSCY1M | 262 | | 9. | | 282 | | 9. | | _ | | | 10 MMAC1 | | | | 11 MSCS1M | | | _ | 12 MSAC2M | | | | 13 MMAC2 | | | | LL mapping protocol machines (DMPMs) | | | | D.1 DMPMS | | | | D.2 DMPMM1 | | | 11 0 | D.3 DMPMM2arameters for a DP-slave | 370 | | | graphygraphy | | | | e 1 – Common structure of specific fields | 20 | | - | e 2 – Coding of the data type BinaryDate | | | Figure | e 3 – Encoding of TimeOfDay value | 31 | | Figure | e 4 – Encoding of Time Difference value | 32 | | Figure | e 5 Encoding of Network Time value | 32 | | Figure | e 6 – Encoding of Network Time Difference value | 33 | | | e 7 – Example Modul_Status_Array | | | | 8 – Example of Ext_Diag_Data in case of DPV1 diagnosis format with alarm and status PDU | | | Figure | 9 – Example of Ext_Diag_Data in case of the basic diagnosis format | 79 | | - | e 10 – Example of a special identifier format | | | - | e 11 – Example of a special identifier format with data types | | | _ | 2 12 – Example of a special identifier format with data types | | | • | e 13 – Example of a special identifier format with data types | | | _ | | | | _ | e 14 – Example for multi-variable device with AI and DO function blocks | | | _ | e 15 – Identifiers (ID) | | | • | e 16 – Identifier list | | | • | e 17 – Structure of the Data_Unit for the request- and response-DLPDU | | | Figure | e 18 – Structuring of the protocol machines and adjacent layers in a DP-slave | 86 | | rigure 19 – Structuring of the protocol machines and adjacent layers in a DP-master (class 1) | 87 | |-----------------------------------------------------------------------------------------------|-----------| | Figure 20 – Structuring of the protocol machines and adjacent layers in a DP-master | | | (class 2) | 88 | | Figure 21 – Sequence of the communication between DP-master and DP-slave | 90 | | Figure 22 – Sequence of communication between DP-master (class 2) and DP-master (class 1) | 92 | | Figure 23 – Sequence of acyclic communication between DP-master (class 1) and DP-slave | 94 | | Figure 24 – Example for connection establishment on MS2 | 96 | | Figure 25 – Idle at master-side on MS2 | 97 | | Figure 26 – Idle at slave-side on MS2 | 98 | | Figure 27 – Example for connection establishment on MS2(server-side) | 239 | | Figure 28 – Structure of RM entries in the RM_Registry | 240 | | | | | Table 1 – State machine description elements | 21 | | Table 2 – Description of state machine elements | 21 | | Table 3 – Conventions used in state machines | 22 | | Table 4 – APDU syntax | 24 | | Table 5 – Substitutions | 27 | | Table 6 – Alarm_Type range | 36 | | Table 7 – Status_Type value range | 36 | | Table 8 – Alarm_Specifier | 37 | | Table 9 – Range of Modul_Status_Entry (1-4) | | | Table 10 – Error type | | | Table 11 – Specification of the bits Lock_Reg and Unlock_Reg | .1.50.442 | | Table 12 – Range of Length_of_Manufacturer_Specific_Data if used in Chk_Cfg-REQ-PDU | | | Table 13 – Range of Length_of_Manufacturer_Specific_Data if used in Get_Cfg-RES-PDU | 51 | | Table 14 - Values (sodes) for data types | | | Table 15 – Specification of the bits for Un-/Sync and Un-/Freeze | | | Table 16 - Coding of the Function_Code/ Function_Num | 57 | | Table 17 – Coding of the Error_Code / Function_Num | | | Table 18 – Values of Error_Decode | 58 | | Table 19 – Coding of Error_Code_1 at DPV1 | 59 | | Table 20 – Values of MDiag_Identifier | | | Table 21 – Values for Area_Code_UpDownload | | | Table 22 – Values for Area_CodeActBrct | | | Table 23 – Values for Area_CodeAct | | | Table 24 – Values for Data_rate | | | Table 25 – Values for Slave_Type | | | Table 26 – Values for Alarm_Mode | | | Table 27 – Values for Subnet | | | Table 28 – Values of reason code if instance is DLI | 73 | | Table 29 – Values of reason code it instance is MS2 | 73 | |-------------------------------------------------------------------------------|-------------| | Table 30 – Values of Extended_Function_Num | 74 | | Table 31 – Values of FI_State | 76 | | Table 32 – Assignment of state machines | 85 | | Table 33 – Primitives issued by AP-Context to FSPMS | 99 | | Table 34 – Primitives issued by FSPMS to AP-Context | 101 | | Table 35 – FSPMS state table | 108 | | Table 36 – Functions used by the FSPMS | 133 | | Table 37 – Primitives issued by AP-Context to FSPMM1 | 135 | | Table 38 – Primitives issued by FSPMM1 to AP-Context | 137 | | Table 39 – FSPMM1 state table | | | Table 40 – Functions used by the FSPMM1 | 170 | | Table 41 – Primitives issued by AP-Context to FSPMM2 | 171 | | Table 42 – Primitives issued by FSPMM2 to AP-Context | 173 | | Table 43 – FSPMM2 state table | 176 | | Table 44 – Functions used by the FSPMM2 | 188 | | Table 45 – Primitives issued by FSPMS to MSCY18 | 189 | | Table 46 – Primitives issued by MSCY1S to FSPMS | 190 | | Table 47 - Rules for DPV1_Status_1, DRV1_Status_2 and DPV1_Status_3 check | 192 | | Table 48 – MSCY1S state table | 197 | | Table 49 – Functions used by the MSCY1S | 219 | | Table 50 – Primitives issued by FSPMS to MSAC1S | 221 | | Table 51 – Primitives is sued by MSAC1S to FSPMS | 222 | | Table 52 - Primitives issued by MSCY1S to MSAC1S | 222 | | Table 53 - Primitives issued by MSAC1S to MSCY1S | 1.5.2223-20 | | Table 54 - Parameter used with primitives exchanged between MSAC1S and MSCY1S | 222 | | Table 55 – MSAC1S state table | 224 | | Table 56 – Functions used by the MSAC1S | 234 | | Table 57 - Primitives issued by FSPMS to SSCY1S | 234 | | Table 58 - Primitives issued by SSCY1S to FSPMS | 235 | | Table 59 – SSCY1S state table | 236 | | Table 60 – Functions used by the SSCY1S | 237 | | Table 61 – Primitives issued by FSPMS to MSRM2S | 238 | | Table 62 – Primitives issued by MSRM2S to FSPMS | 238 | | Table 63 – MSRM2S state table | 241 | | Table 64 – Primitives issued by FSPMS to MSAC2S | 244 | | Table 65 – Primitives issued by MSAC2S to FSPMS | 245 | | Table 66 – Primitives issued by MSRM2S to MSAC2S | 245 | | Table 67 – Primitives issued by MSAC2S to MSRM2S | 246 | | Table 68 – Parameter used with primitives exchanged with MSAC2S | | | Table 69 – MSAC2S state table | | | Table 70 – Primitives issued by MSCS1S to FSPMS | | | Table 71 – MSCS1S state table | | | | | | Table 72 - Primitives issued by FSPMM1 to MSCY1M | 263 | |----------------------------------------------------------------------------------|----------| | Table 73 – Primitives issued by MSCY1M to FSPMM1 | 264 | | Table 74 – Parameters used with primitives exchanged between FSPMM1 and MSCY1M . | | | Table 75 – MSCY1M state table | 267 | | Table 76 – Primitives issued by FSPMM1 to MSAL1M | 282 | | Table 77 – Primitives issued by MSAL1M to FSPMM1 | 283 | | Table 78 – Primitives issued by MSCY1M to MSAL1M | 283 | | Table 79 – Primitives issued by MSAL1M to MSCY1M | 283 | | Table 80 – Parameter used with primitives exchanged between MSAL1M and MSCY1M | 283 | | Table 81 – Possible values in the Alarm_State_Table | | | | 287 | | Table 83 – Primitives issued by FSPMM1 to MSAC1M | 292 | | Table 84 – Primitives issued by MSAC1M to FSPMM1 | 292 | | | 293 | | Table 86 – Primitives issued by MSAC1M to MSAL1M | 293 | | Table 87 - Parameter used with primitives exchanged between MSAL1M and MSCY1M | 293 | | Table 88 – MSAC1M state table | | | Table 89 – Primitives issued by FSPMM1 to MMAC1 | 305 | | Table 90 – Primitives issued by MMAC1 to FSPMM1 | 305 | | Table 91 – MMAC1 state table | 307 | | Table 92 – Primitives issued by FSPMM1 to MSCS1M | 312 | | Table 93 – Primitives issued by MSCS1M to FSPMM1 | | | Table 94 – MSCS1M state table | | | Table 95 – Primitives issued by FSPMM2 to MSAC2M | 316 | | Table 96 - Primitives issued by MSAC2M to FSPMM2 | .5.3173- | | Table 97 – Parameters used with primitives exchanged with MSAC2M | | | Table 98 – MSAC2M state table | 321 | | Table 99 – Primitives issued by FSPMM2 to MMAC2 | 332 | | Table 100 - Primitives issued by MMAC2 to FSPMM2 | 333 | | Table 101 – Parameters used with primitives exchanged with MMAC2 | 333 | | Table 102 – MMAC2 state table | 334 | | Table 103 – Primitives issued by FSPMS to DMPMS | 339 | | Table 104 – Primitives issued by DMPMS to FSPMS | 340 | | Table 105 – Primitives issued by MSCY1S to DMPMS | | | Table 106 – Primitives issued by DMPMS to MSCY1S | | | Table 107 – Primitives issued by DMPMS to SSCY1S | | | Table 108 – Primitives issued by MSAC1S, MSRM2S, MSAC2S to DMPMS | 342 | | Table 109 – Primitives issued by DMPMS to MSAC1S, MSRM2S, MSAC2S | | | Table 110 – Primitives issued by DMPMS to MSCS1S | | | Table 111 – Primitives issued by DMPMS to DL | | | Table 112 – Primitives issued by DL to DMPMS | | | Table 113 – Parameters used with primitives exchanged with DMPMS | | | Table 114 – DMPMS state table | | | | | | Table 115 – Functions used by the DMPMS | 352 | |------------------------------------------------------------------------------------|-----| | Table 116 – Primitives issued by FSPMM1 to DMPMM1 | 353 | | Table 117 – Primitives issued by DMPMM1 to FSPMM1 | 354 | | Table 118 – Primitives issued by MSCY1M to DMPMM1 | 354 | | Table 119 – Primitives issued by DMPMM1 to MSCY1M | 355 | | Table 120 – Primitives issued by MSAL1M, MSAC1M to DMPMM1 | 355 | | Table 121 – Primitives issued by DMPMM1 to MSAL1M, MSAC1M | 355 | | Table 122 – Primitives issued by MMAC1 to DMPMM1 | 356 | | Table 123 – Primitives issued by DMPMM1 to MMAC1 | 356 | | Table 124 – Primitives issued by MSCS1M to DMPMM1 | 356 | | Table 125 – Primitives issued by DMPMM1 to MSCS1M | 357 | | Table 126 – Primitives issued by DMPMM1 to DL | 357 | | Table 127 – Primitives issued by DL to DMPMM1 | 358 | | Table 128 – Parameters used with primitives exchanged with DMRMM1 | 359 | | Table 129 – Possible values of status | 360 | | Table 130 – DMPMM1 state table | 361 | | Table 131 – Functions used by the DMPMM1 | | | Table 132 – Primitives issued by FSPMM2 to DMRMM2 | 370 | | Table 133 – Primitives issued by DMPMM2 to FSPMM2 | 371 | | Table 134 – Primitives issued by MSAC2M to DMPMM2 | | | Table 135 – Primitives issued by DMPMM2 to MSAC2M | | | Table 136 – Primitives issued by MMAC2 to DMPMM2 | 372 | | Table 137 – Primitives squed by DMPMM2 to MMAC2 | 372 | | Table 138 – Primitives issued by DMPMM2 to DL | 373 | | Table 139 – Primitives issued by DL to DMPMM2 .8354200-bb95.98b300deb988/iec61.1.5 | | | Table 140 – Parameters used with primitives exchanged with DMPMM2 | 374 | | Table 141 – DMPMM2 state table | | | Table 142 – Functions used by DMPMM2 | 378 | | Table 143 – Bus parameter/reaction times for a DP-slave | 379 | ## INTERNATIONAL ELECTROTECHNICAL COMMISSION ## INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – ## Part 6-3: Application layer protocol specification - Type 3 elements #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other combinations may require permission from their respective intellectual-property-right holders. IEC draws attention to the fact that it is claimed that compliance with this standard may involve the use of patents as follows, where the [xx] notation indicates the holder of the patent right: The following patent rights for Type 3 have been announced: DE 36 43 979 C2 [SI] Deterministisches Zugriffsverfahren nach dem Tokenprinzip für eine Datenübertragung DE 36 43 979 A1 [SI] Deterministisches Zugriffsverfahren nach dem Tokenprinzip für eine Datenübertragung IEC takes no position concerning the evidence, validity and scope of these patent rights. The holders of these patent rights have assured IEC that they are willing to negotiate licenses under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holders of these patent rights are registered with IEC. Information may be obtained from: SI]: SIEMENS AG Ludwig Winkel Siemensallee 73 D-76181 Karlsruhe Germany https Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61158-6-3 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation. This first edition and its companion parts of the IEC 61158-6 subseries cancel and replace IEC 61158-6:2003. This edition of this part constitutes an editorial revision. This edition of IEC 61158-6 includes the following significant changes from the previous edition: - a) deletion of the former Type 6 fieldbus for lack of market relevance; - b) addition of new types of fieldbuses; - c) partition of part 6 of the third edition into multiple parts numbered 6-2, -6-3, The text of this standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 65C/476/FDIS | 65C/487/RWD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with ISO (IEO Directives, Part 2. The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEG web site under http://webstore.iec.ch in the data related to the specific publication. At this date, the publication will be: - reconfirmed: - withdrawn; - replaced by a revised edition, or - https://stanamended. NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series. The list of all the parts of the IEC 61158 series, under the general title *Industrial* communication networks – Fieldbus specifications, can be found on the IEC web site. ## INTRODUCTION This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC/TR 61158-1. The application protocol provides the application service by making use of the services available from the data-link or other immediately lower layer. The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer application entities (AEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes: - · as a guide for implementors and designers; - for use in the testing and procurement of equipment; - as part of an agreement for the admittance of systems into the open systems environment; - as a refinement to the understanding of time-critical communications within OSI. This standard is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this standard together with other standards positioned within the OSI or fieldbus reference models otherwise incompatible systems may work together in any combination. iTex Syntaxos (https://staroxyox.iteh.ai) Dycux en Preview https://standards.iteh.ai/ https://standards.iteh.ai/ tandx.ls/1/66/90cb8a-a83c-4200-bb95-98b300deb988/iec-61158-6-3-2007 ## INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – ## Part 6-3: Application layer protocol specification – Type 3 elements ## 1 Scope #### 1.1 General The fieldbus Application Layer (FAL) provides user programs with a means to access the fieldbus communication environment. In this respect, the FAL can be viewed as a "window between corresponding application programs." This standard provides common elements for basic time critical and non-time-critical messaging communications between application programs in an automation environment and material specific to Type 3 fieldbus. The term "time-critical" is used to represent the presence of a time-window, within which one or more specified actions are required to be completed with some defined level of certainty. Failure to complete specified actions within the time window risks failure of the applications requesting the actions, with attendant risk to equipment, plant and possibly human life. This standard defines in an abstract way the externally visible behavior provided by the Type 3 fieldbus application layer in terms of - a) the abstract syntax defining the application layer protocol data units conveyed between communicating application entities, - b) the transfer syntax defining the application lawer protocol data units conveyed between communicating application entities, - c) the application context state machine defining the application service behavior visible between communicating application entities; and - d) the application relationship state machines defining the communication behavior visible between communicating application entities; and. The purpose of this standard is to define the protocol provided to - 1) define the wire representation of the service primitives specified in IEC 61158-5-3, and - 2) define the externally visible behavior associated with their transfer. This standard specifies the protocol of the Type 3 fieldbus application layer, in conformance with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI Application Layer Structure (ISO/IEC 9545). FAL services and protocols are provided by FAL application-entities (AE) contained within the application processes. The FAL AE is composed of a set of object-oriented Application Service Elements (ASEs) and a Layer Management Entity (LME) that manages the AE. The ASEs provide communication services that operate on a set of related application process object (APO) classes. One of the FAL ASEs is a management ASE that provides a common set of services for the management of the instances of FAL classes. Although these services specify, from the perspective of applications, how request and responses are issued and delivered, they do not include a specification of what the requesting and responding applications are to do with them. That is, the behavioral aspects of the applications are not specified; only a definition of what requests and responses they can send/receive is specified. This permits greater flexibility to the FAL users in standardizing such object behavior. In addition to these services, some supporting services are also defined in this standard to provide access to the FAL to control certain aspects of its operation. #### 1.2 Specifications The principal objective of this standard is to specify the syntax and behavior of the application layer protocol that conveys the application layer services defined in IEC 61158-5-3. A secondary objective is to provide migration paths from previously-existing industrial communications protocols. It is this latter objective which gives rise to the diversity of protocols standardized in parts of the IEC 61158-6 series. #### 1.3 Conformance This standard does not specify individual implementations or products, nor does it constrain the implementations of application layer entities within industrial automation systems. There is no conformance of equipment to the application layer service definition standard. Instead, conformance is achieved through implementation of this application layer protocol specification. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60559, Binary floating-point arithmetic for microprocessor systems IEC 61158-3-3, Industrial communication networks – Fieldbus specifications – Part 3-3: Datalink layer service definition – Type 3 elements IEC 61158-4-3, Industrial communication networks – Fieldbus specifications – Part 4-3: Data-3 2007 link layer protocol specification – Type 3 elements IEC 61158-5-3, Industrial communication networks – Fieldbus specifications – Part 5-3: Application layer service definition – Type 3 elements ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference Model – Conventions for the definition of OSI services ISO/IEC 7498-1, Information technology – Open Systems Interconnection – Basic Reference Model – Part1: The Basic Model ISO/IEC 8822, Information technology – Open Systems Interconnection – Presentation service definition ISO/IEC 8824, Information technology – Open Systems Interconnection – Specification of Abstract Syntax Notation One (ASN.1) ISO/IEC 9545, Information technology — Open Systems Interconnection — Application Layer structure