

Edition 1.0 2007-12

INTERNATIONAL STANDARD

Industrial communication networks – Fieldbus specifications – Part 6-17: Application layer protocol specification – Type 17 elements

Document Preview

IEC 61158-6-17:2007

https://standards.iteh.ai/catalog/standards/iec/78b4eef2-025c-4a20-ad0d-74c8f585339d/iec-61158-6-17-2007

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2007 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland

Email: inmail@iec.ch Web: www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

- Catalogue of IEC publications: www.iec.ch/searchpub
- The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications.
- IEC Just Published: www.iec.ch/online news/justpub
 Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email.
- Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online.

■ Customer Service Centre: <u>www.iec.ch/webstore/custserv</u>

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service Centre FAQ or contact us:

Email: csc@iec.ch

Tel.: +41 22 919 02 11atalog/standards/iec/78b4eef2-025c-4a20-ad0d-74c8f585339d/iec-61158-6-17-2007

Fax: +41 22 919 03 00

Edition 1.0 2007-12

INTERNATIONAL STANDARD

Industrial communication networks – Fieldbus specifications – Part 6-17: Application layer protocol specification – Type 17 elements

Document Preview

EC 61158-6-17:2007

https://standards.iteh.ai/catalog/standards/iec/78b4eef2-025c-4a20-ad0d-74c8f585339d/iec-61158-6-17-2007

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PRICE CODE XB

ICS 35.100.70; 25.040.40 ISBN 2-8318-9495-6

CONTENTS

1	Scop	e	8
	1.1	General	
	1.2	Specifications	
	1.3	Conformance	
2	Norm	ative reference	
3	Definitions		
	3.1	Terms and definitions	
	3.2	Abbreviations and symbols	
	3.3	Conventions	
4	Abstr	act syntax description	18
	4.1	FAL PDU abstract syntax	
	4.2	Abstract syntax of PDU body	
	4.3	PDUs for ASEs	
	4.4	Type definitions	23
	4.5	Data types	
5	Trans	sfer syntax	28
	5.1	Overview of encoding	
	5.2	APDU header encoding	
	5.3	APDU body encoding	
	5.4	Data type encoding rules	
6	FAL	protocol state machines structure	
7	AP-c	ontext state machine	35
8 a	FALS	service protocol machines (FSPMs)	id/iec-6.1.1.58-6 3 5
	8.1	General	
	8.2	Common parameters of the primitives	
	8.3	Variable ASE protocol machine (VARM)	36
	8.4	Event ASE protocol machine (EVTM)	
	8.5	Load region ASE protocol machine (LDRM)	
	8.6	Function invocation ASE protocol machine (FNIM)	
	8.7	Time ASE protocol machine (TIMM)	
	8.8	Network management ASE protocol machine (NWMM)	5
9	Appli	cation relationship protocol machines (ARPMs)	55
	9.1	General	55
	9.2	Primitive definitions	
	9.3	State machine	56
	9.4	Functions	64
10	DLL	mapping protocol machine (DMPM)	
	10.1	General	65
		Primitive definitions	
	10.3	DMPM state machine	67
Rih		ohy	

Figure 2 – Type field	29
Figure 3 – Identifier octet	29
Figure 4 – Length octet (one-octet format)	30
Figure 5 – Length octets (three-octet format)	30
Figure 6 – Relationships among protocol machines and adjacent layers	34
Figure 7 – State transition diagram of VARM	37
Figure 8 – State transition diagram of EVTM	40
Figure 9 – State transition diagram of LDRM	42
Figure 10 – State transition diagram of FNIM	44
Figure 11 – State transition diagram of TIMM	48
Figure 12 – State transition diagram of NWMM	52
Figure 13 – State transition diagram of the PTC-ARPM	57
Figure 14 – State transition diagram of the PTU-ARPM	59
Figure 15 – State transition diagram of the PSU-ARPM	60
Figure 16 – State transition diagram of the MTU-ARPM	62
Figure 17 – State transition diagram of the MSU-ARPM	63
Figure 18 – State transition diagram of DMPM	67
Table 1 – Conventions used for AE state machine definitions	
Table 2 – Encoding of FalArHeader field	28
Table 3 – Primitives exchanged between FAL user and VARM	36
Table 4 – Parameters used with primitives exchanged FAL user and VARM	36
Table 5 – VARM state table – Sender transitions	37
Table 6 – VARM state table – Receiver transitions	
Table 7 – Functions used by the VARM 8.54667-0256-4420-4004-7468585339d/iec-6.	1.58397-2007
Table 8 – Primitives exchanged between FAL user and EVTM	39
Table 9 – Parameters used with primitives exchanged FAL user and EVTM	39
Table 10 – EVTM state table – Sender transitions	40
Table 11 – EVTM state table – Receiver transitions	40
Table 12 – Functions used by the EVTM	40
Table 13 – Primitives exchanged between FAL user and LDRM	41
Table 14 – Parameters used with primitives exchanged FAL user and LDRM	41
Table 15 – LDRM state table – Sender transitions	42
Table 16 – LDRM state table – Receiver transitions	
Table 17 – Functions used by the LDRM	43
Table 18 – Primitives exchanged between FAL user and FNIM	44
Table 19 – Parameters used with primitives exchanged FAL user and FNIM	44
Table 20 – FNIM state table – Sender transitions	45
Table 21 – FNIM state table – Receiver transitions	45
Table 22 – Functions used by the FNIM	47
Table 23 – Primitives exchanged between FAL user and TIMM	47
Table 24 – Parameters used with primitives exchanged FAL user and TIMM	47
Table 25 – TIMM states	48

Table 26 – TIMM state table – Sender transitions	49
Table 27 – TIMM state table – Receiver transitions	50
Table 28 – Functions used by the TIMM	51
Table 29 – Primitives exchanged between FAL user and NWMM	51
Table 30 – Parameters used with primitives exchanged FAL user and NWMM	52
Table 31 – NWMM states	52
Table 32 – NWMM state table – Sender transitions	53
Table 33 – NWMM state table – Receiver transitions	54
Table 34 – Functions used by the NWMM	55
Table 35 – Primitives exchanged between FSPM and ARPM	56
Table 36 – Parameters used with primitives exchanged FSPM user and ARPM	56
Table 37 – PTC-ARPM states	56
Table 38 – PTC-ARPM state table – Sender transitions	57
Table 39 – PTC-ARPM state table – Receiver transitions	58
Table 40 – PTU-ARPM states	59
Table 41 – PTU-ARPM state table – Sender transitions	59
Table 42 – PTU-ARPM state table – Receiver transitions	60
Table 43 – PSU-ARPM states	60
Table 44 – PSU-ARPM state table – Sender transitions	61
Table 45 – PSU-ARPM state table – Receiver transitions	61
Table 46 – MTU-ARPM states	62
Table 47 – MTU-ARPM state table – Sender transitions	62
Table 48 – MTU-ARPM state table – Receiver transitions	63
Table 49 – MSU-ARPM states	63
Table 50 - MSU-ARPM state table - Sender transitions	64
Table 51 – MSU-ARPM state table – Receiver transitions	64
Table 52 – Functions used by the ARPMs	65
Table 53 – Primitives exchanged between DMPM and ARPM	66
Table 54 – Primitives exchanged between data-link layer and DMPM	66
Table 55 – DMPM states	67
Table 56 – DMPM state table – Sender transitions	67
Table 57 – DMPM state table – Receiver transitions	69
Table 58 – Functions used by the DMPM	69

INTERNATIONAL ELECTROTECHNICAL COMMISSION

INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

Part 6-17: Application layer protocol specification – Type 17 elements

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicy Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.

NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other combinations may require permission from their respective intellectual-property-right holders.

IEC draws attention to the fact that it is claimed that compliance with this standard may involve the use of patents as follows, where the [xx] notation indicates the holder of the patent right:

Type 17:

PCT Application No. PCT/JP2004/011537 [YEC] Communication control method PCT Application No. PCT/JP2004/011538 [YEC] Communication control method

IEC takes no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured IEC that they are willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holders of these patent rights are registered with IEC. Information may be obtained from:

[YEC]: Yokogawa Electric Corporation

2-9-32 Nakacho, Musashino-shi, 180-8750 Tokyo,

180-8750 Tokyo,

Japan

Attention: Intellectual Property & Standardization Center

Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights other than those identified above. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61158-6-17 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation.

This first edition and its companion parts of the IEC 61158-6 subseries cancel and replace IEC 61158-6:2003. This edition of this part constitutes a technical addition. This part and its Type 17 companion parts also cancel and replace IEC/PAS 62405, published in 2005.

This edition of IEC 61158-6 includes the following significant changes from the previous edition:

- a) deletion of the former Type 6 fieldbus for lack of market relevance;
- b) addition of new types of fieldbuses;
- c) partition of part 6 of the third edition into multiple parts numbered -6-2, -6-3, ...

The text of this standard is based on the following documents:

FDIS	Report on voting
65C/476/FDIS	65C/487/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under http://webstore.iec.ch in the data related to the specific publication. At this date, the publication will be:

- reconfirmed;
- withdrawn:
- replaced by a revised edition, or IEC 61158-6-17:2007
- https://ataramendedi.ai/catalog/standards/iec/78b4eef2-025c-4a20-ad0d-74c8f585339d/iec-61158-6-17-2007

NOTE The revision of this standard will be synchronized with the other parts of the IEC 61158 series.

The list of all the parts of the IEC 61158 series, under the general title *Industrial communication networks – Fieldbus specifications*, can be found on the IEC web site.

INTRODUCTION

This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC/TR 61158-1.

The application protocol provides the application service by making use of the services available from the data-link or other immediately lower layer. The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer application entities (AEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes:

- as a guide for implementors and designers;
- for use in the testing and procurement of equipment;
- as part of an agreement for the admittance of systems into the open systems environment;
- as a refinement to the understanding of time-critical communications within OSI.

This standard is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this standard together with other standards positioned within the OSI or fieldbus reference models, otherwise incompatible systems may work together in any combination.

iTeh Standards (https://standards.iteh.ai) Document Preview

IEC 61158-6-17:2007

https://standards.iteh.ai/catalog/standards/iec/78b4eef2-025c-4a20-ad0d-74c8f585339d/iec-61158-6-17-2007

INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS –

Part 6-17: Application layer protocol specification – Type 17 elements

1 Scope

1.1 General

The fieldbus application layer (FAL) provides user programs with a means to access the fieldbus communication environment. In this respect, the FAL can be viewed as a "window between corresponding application programs."

This standard provides common elements for basic time-critical and non-time-critical messaging communications between application programs in an automation environment and material specific to Type 17 fieldbus. The term "time-critical" is used to represent the presence of a time-window, within which one or more specified actions are required to be completed with some defined level of certainty. Failure to complete specified actions within the time window risks failure of the applications requesting the actions, with attendant risk to equipment, plant and possibly human life.

This standard specifies interactions between remote applications and defines the externally visible behavior provided by the Type 17 fieldbus application layer in terms of

- a) the formal abstract syntax defining the application layer protocol data units conveyed between communicating application entities;
- b) the transfer syntax defining encoding rules that are applied to the application layer protocol data units;
- c) the application context state machine defining the application service behavior visible between communicating application entities;
- d) the application relationship state machines defining the communication behavior visible between communicating application entities.

The purpose of this standard is to define the protocol provided to

- 1) define the wire-representation of the service primitives defined in IEC 61158-5-17, and
- 2) define the externally visible behavior associated with their transfer.

This standard specifies the protocol of the Type 17 fieldbus application layer, in conformance with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI application layer structure (ISO/IEC 9545).

1.2 Specifications

The principal objective of this standard is to specify the syntax and behavior of the application layer protocol that conveys the application layer services defined in IEC 61158-5-17.

A secondary objective is to provide migration paths from previously-existing industrial communications protocols. It is this latter objective which gives rise to the diversity of protocols standardized in the IEC 61158-6 series.

1.3 Conformance

This standard does not specify individual implementations or products, nor does it constrain the implementations of application layer entities within industrial automation systems.

Conformance is achieved through implementation of this application layer protocol specification.

2 Normative reference

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61158-5-17, Industrial communication networks — Fieldbus specifications - Part 5-17: Application layer service definition — Type 17 elements

ISO/IEC 7498 (all parts), Information technology – Open Systems Interconnection – Basic Reference Model

ISO/IEC 8824-2, Information technology – Abstract Syntax Notation One (ASN.1): Information object specification

ISO/IEC 8825-1, Information technology – ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

ISO/IEC 9545, Information technology – Open Systems Interconnection – Application Layer structure

ISO/IEC 10731, Information technology – Open Systems Interconnection – Basic Reference Model – Conventions for the definition of OSI services

Document Preview

3 Definitions

For the purposes of this document, the following terms and definitions apply. $_{30d/ee-61158-6-17-2007}$

3.1 Terms and definitions

3.1.1 ISO/IEC 7498-1 terms

For the purposes of this document, the following terms as defined in ISO/IEC 7498-1 apply:

- d) application entity
- e) application protocol data unit
- f) application service element

3.1.2 ISO/IEC 8824-2 terms

For the purposes of this document, the following terms as defined in ISO/IEC 8824 apply:

- a) any type
- b) bitstring type
- c) Boolean type
- d) choice type
- e) false
- f) integer type
- g) null type
- h) octetstring type

- i) sequence of type
- j) sequence type
- k) simple type
- I) structured type
- m) tagged type
- n) true
- o) type
- p) value

3.1.3 ISO/IEC 10731 terms

- a) (N)-connection
- b) (N)-entity
- c) (N)-layer
- d) (N)-service
- e) (N)-service-access-point
- f) confirm (primitive)
- g) indication (primitive)
- h) request (primitive)
- i) response (primitive)

3.1.4 Other terms and definitions (https://standards.iteh.ai)

3.1.4.1

application

function or data structure for which data is consumed or produced

3.1.4.2

application process

part of a distributed application on a network, which is located on one device and unambiguously addressed

3.1.4.3

application relationship

cooperative association between two or more application-entity-invocations for the purpose of exchange of information and coordination of their joint operation

NOTE This relationship is activated either by the exchange of application-protocol-data-units or as a result of preconfiguration activities

3.1.5

application relationship application service element

application-service-element that provides the exclusive means for establishing and terminating all application relationships

3.1.5.1

application relationship endpoint

context and behavior of an application relationship as seen and maintained by one of the application processes involved in the application relationship

NOTE Each application process involved in the application relationship maintains its own application relationship endpoint.

3.1.5.2

attribute

description of an externally visible characteristic or feature of an object

NOTE The attributes of an object contain information about variable portions of an object. Typically, they provide status information or govern the operation of an object. Attributes may also affect the behaviour of an object. Attributes are divided into class attributes and instance attributes.

3.1.5.3

behaviour

indication of how an object responds to particular eventss

3.1.5.4

bridge

intermediate equipment that connects two or more segments using a data-link layer relay function

3.1.5.5

channel

single physical or logical link of an input or output application object of a server to the process

3.1.5.6

class

a set of objects, all of which represent the same kind of system component

NOTE A class is a generalisation of an object; a template for defining variables and methods. All objects in a class are identical in form and behaviour, but usually contain different data in their attributes.

3.1.5.7

client

- a) object which uses the services of another (server) object to perform a task
- b) initiator of a message to which a server reacts

3.1.5.8

connection

logical binding between application objects that may be within the same or different devices

NOTE 1 Connections may be either point-to-point or multipoint.

NOTE 2 The logical link between sink and source of attributes and services at different custom interfaces of RT-Auto ASEs is referred to as interconnection. There is a distinction between data and event interconnections. The logical link and the data flow between sink and source of automation data items is referred to as data interconnection. The logical link and the data flow between sink (method) and source (event) of operational services is referred to as event interconnection.

3.1.5.9

connection point

buffer which is represented as a subinstance of an Assembly object

3.1.5.10

conveyance path

unidirectional flow of APDUs across an application relationship

3.1.5.11

dedicated AR

AR used directly by the FAL User

NOTE On Dedicated ARs, only the FAL Header and the user data are transferred.

3.1.5.12

device

physical hardware connected to the link

NOTE A device may contain more than one node.

3.1.5.13

domain

part of the RTE network consisting of one or two subnetwork(s)

NOTE Two subnetworks are required to compose a dual-redundant RTE network, and each end node in the domain is connected to both of the subnetworks.

3.1.5.14

domain master

station which performs diagnosis of routes to all other domains, distribution of network time to nodes inside the domain, acquisition of absolute time from the network time master and notification of status of the domain

3.1.5.15

domain number

numeric identifier which indicates a domain

3.1.5.16

end node

producing or consuming node

3.1.5.17

endpoint

one of the communicating entities involved in a connection

3.1.5.18

error

discrepancy between a computed, observed or measured value or condition and the specified or theoretically correct value or condition

3.1.5.19

error class

general grouping for related error definitions and corresponding error codes

3.1.5.20

external bridge

bridge to which neither internal bridges nor RTE stations are connected directly

3.1.5.21

event

an instance of a change of conditions

3.1.5.22

group

- a) <general> a general term for a collection of objects. Specific uses:
- b) <addressing> when describing an address, an address that identifies more than one entity

3.1.5.23

interface

- a) shared boundary between two functional units, defined by functional characteristics, signal characteristics, or other characteristics as appropriate
- collection of FAL class attributes and services that represents a specific view on the FAL class

3.1.5.24

interface port

physical connection point of an end node, which has an independent DL-address

3.1.5.25

internal bridge

bridge to which no routers, external bridges or nodes non-compliant with this specification are connected directly