Edition 1.0 2007-12 # INTERNATIONAL STANDARD # THIS PUBLICATION IS COPYRIGHT PROTECTED ## Copyright © 2007 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch Web: www.iec.ch #### About the IEC The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. #### **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Rease make sure that you have the latest edition, a corrigenda or an amendment might have been published. ■ Catalogue of IEC publications: <u>www.iec.ch/searchpub</u> The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications. ■ IEC Just Published: www.iec.ch/online news/justpub Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email. ■ Electropedia: <u>www.electropedia.org</u> The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online. Customer Service Centre: www.ies.ch/webstore/custserv If you wish to give us your feedback on this publication of need further assistance, please visit the Customer Service Centre FAQ or contact us: Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00 Edition 1.0 2007-12 # INTERNATIONAL STANDARD Industrial communication networks - Fieldbus specifications - Part 6-20: Application layer protocol specification - Type 20 elements INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE ISBN 2-8318-9500-6 # CONTENTS | IN٦ | RODUCTION | | |--------------------------------------------------------------|-------------------------------------------------------------|----------| | 1 | Scope | | | | 1.1 General | | | | 1.2 Specifications | | | | 1.3 Conformance | | | 2 | Normative references | | | 3 Terms, definitions, symbols, abbreviations and conventions | | 1 | | | 3.1 Terms and definitions from other ISO/IEC standards | | | | 3.2 IEC/TR 61158-1 terms | \ | | | 3.3 Type 20 fieldbus application-layer specific definitions | 1 | | | 3.4 Abbreviations and symbols | 1 | | | | | | | 3.6 Conventions used in state machines | 1 | | 4 | Abstract syntax | 1 | | 5 | Transfer syntax | 1 | | | 5.1 General | 1 | | | 5.2 Common APDU structure | 1 | | | 5.3 Service-specific APDU structures | 2 | | | 5.4 Data coding rules | | | 6 | Structure of FAL protocol state machines | 4 | | 7 | AP-context state machines | 4 | | 8 | FAL service protocol machine (FSRM) | 4 | | | 8.1 General | 4 | | | 8.2 FSPM state tables | -61158-4 | | | 8.3 Functions used by FSPM | | | | 8.4 Parameters of FSPM/ARPM primitives | 4 | | 9 | Application relationship protocol machines (ARPMs) | 4 | | | 9.1 AREP mapping to data link layer | 4 | | | 9.2 Application relationship protocol machines (ARPMs) | 4 | | | 9.3 ARER state machine primitive definitions | 5 | | | 9.4 AREP state machine functions | 5 | | 10 | DLL mapping protocol machine (DMPM) | 5 | | | 10.1 DMPM states | 5 | | | 10.2 DMPM state machines | 5 | | | 10.3 Primitives exchanged between data link layer and DMPM | 5 | | | 10.4 Functions used by DMPM | 5 | | Bib | liography | 5 | | Fig | ure 1 – APDU format | 1 | | _ | ure 2 – Normal response from slave to master | | | _ | ure 3 – Command error response from slave to master | | | _ | ure 4 – Communication error response from slave to master | | | | are + - communication error response from slave to master | ∠ | | Figure 7 – Coding of Integer16 type data | 36 | |-------------------------------------------------|-----------------------------------------------| | Figure 8 – Coding of Unsigned type data | 36 | | Figure 9 – Coding of Unsigned16 type data | 36 | | Figure 10 – Coding of single precision Floa | ting Point type data36 | | Figure 11 – Coding of double precision Floa | ating Point type data37 | | Figure 12 – Coding of Date type data | 37 | | Figure 13 – Relationships among protocol n | nachines and adjacent layers41 | | Figure 14 – State transition diagram of FSP | °M42 | | Figure 15 – State transition diagram of the | client ARPM49 | | | server ARPM50 | | Figure 17 – State transition diagram of DMF | | | Table 1 – Conventions used for state mach | ines16 | | Table 2 – Response code values | | | Table 3 – Device status values | 19 | | Table 4 – Response code values | 20 | | Table 5 – Communication error codes | | | Table 6 – Identify request APDU | | | Table 7 – Identify response value field | | | Table 8 – Identify command specific respon | ise codes | | Table 9 – Read primary variable response | value field | | Table 10 - Read primary variable command | d specific response codes23 | | Table 11 - Read loop current and percent | of range value field23 | | Table 12 - Read loop current and percent of | of range command specific response codes24 | | Table 13 - Read dynamic variables and loo | p current value field 66655853975446556115824 | | Table 14 - Read dynamic variables and loo | p current command specific response | | | 24 | | | 25 | | | 25 | | | specific response codes25 | | Table 18 – Read loop configuration value fi | eld26 | | Table 19 – Read loop configuration comma | nd specific response codes26 | | Table 20 – Read dynamic variable families | classifications value field26 | | Table 21 – Read dynamic variable families codes | classifications command specific response27 | | Table 22 – Read device variables with statu | us request value field27 | | Table 23 – Read device variables with statu | us command specific response codes27 | | Table 24 – Read device variables with statu | us value field28 | | Table 25 – Variable status values | 28 | | Table 26 – Read message response value t | field29 | | Table 27 – Read message command specif | ic response codes29 | | | onse value field30 | | | nand specific response codes30 | | | er information response value field30 | | | | | Table 31 – Read primary variable transducer information command specific response codes | 31 | |-----------------------------------------------------------------------------------------|----| | Table 32 – Read device information response value field | | | Table 33 – Read device information command specific response codes | 32 | | Table 34 – Read final assembly number response value field | 32 | | Table 35 – Read final assembly number command specific response codes | | | Table 36 – Write message value field | 32 | | Table 37 – Write message command specific response codes | 33 | | Table 38 – Write tag, descriptor, date value field | 33 | | Table 39 – Write tag, descriptor, date command specific response codes | 33 | | Table 40 – Write final assembly number value field | 34 | | Table 41 – Write final assembly number command specific response codes | 34 | | Table 42 – Read long tag response value field | 34 | | Table 43 – Read long tag command-specific response codes | 34 | | Table 44 – Write long tag value field | 35 | | Table 45 – Write long tag command specific Response codes | 35 | | Table 46 – Coding for Date type | 37 | | Table 47 – Coding for one octet Enumerated Type | 38 | | Table 48 – One octet bit field | 39 | | Table 49 – Packed ASCII character set | 39 | | Table 50 – Acceptable subset of ISO Latin-1 characters | 40 | | Table 51 – FSPM state table – client transactions | 42 | | Table 52 – FSPM state table – server transactions | 46 | | Table 53 – Function Command () | 47 | | Table 54 – Function CommErr () | 47 | | Table 55 – Function CommandErr () | | | Table 56 – Function Resp (). | 47 | | Table 57 – Function Device () | 47 | | Table 58 Rarameters used with primitives exchanged between FSPM and ARPM | 47 | | Table 59 - Client ARPM states | 49 | | Table 60 – Client ARPM state table | 50 | | Table 61 – Server ARPM states | 50 | | Table 62 – Server ARPM state table | 50 | | Table 63 – Primitives issued from ARPM to DMPM | 51 | | Table 64 – Primitives issued by DMPM to ARPM | 51 | | Table 65 – Parameters used with primitives exchanged between ARPM and DMPM | 51 | | Table 66 – DMPM state descriptions | 52 | | Table 67 – DMPM state table – Client transactions | 52 | | Table 68 – DMPM state table – Server transactions | 52 | | Table 69 – Primitives exchanged between data-link layer and DMPM | 53 | ## INTERNATIONAL ELECTROTECHNICAL COMMISSION # INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – # Part 6-20: Application layer protocol specification - Type 20 elements #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparational, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Rublication. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC of its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. NOTE Use of some of the associated protocol types is restricted by their intellectual-property-right holders. In all cases, the commitment to limited release of intellectual-property-rights made by the holders of those rights permits a particular data-link layer protocol type to be used with physical layer and application layer protocols in Type combinations as specified explicitly in the IEC 61784 series. Use of the various protocol types in other combinations may require permission from their respective intellectual-property-right holders. International Standard IEC 61158-6-20 has been prepared by subcommittee 65C: Industrial networks, of IEC technical committee 65: Industrial-process measurement, control and automation. This first edition and its companion parts of the IEC 61158-6 subseries cancel and replace IEC 61158-6:2003. This edition of this part constitutes a technical addition. This edition of IEC 61158-6 includes the following significant changes from the previous edition: - a) deletion of the former Type 6 fieldbus for lack of market relevance; - b) addition of new types of fieldbuses; - c) partition of part 6 of the third edition into multiple parts numbered -6-2, -6-3, ... The text of this standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 65C/476/FDIS | 65C/487/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with ISO/IEC Directives, Part 2. The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under http://webstore.iec.ch in the data related to the specific publication. At this date, the publication will be - reconfirmed; - withdrawn; - replaced by a revised edition, or - · amended. NOTE The revision of this standard will be synchronized with the other parts of the IEC 61188 series. The list of all the parts of the IEC 61158 series under the general title Industrial communication networks – Fieldbus specifications, can be found on the IEC web site. ## INTRODUCTION This part of IEC 61158 is one of a series produced to facilitate the interconnection of automation system components. It is related to other standards in the set as defined by the "three-layer" fieldbus reference model described in IEC/TR 61158-1. The application protocol provides the application service by making use of the services available from the data-link or other immediately lower layer. The primary aim of this standard is to provide a set of rules for communication expressed in terms of the procedures to be carried out by peer application entities (AEs) at the time of communication. These rules for communication are intended to provide a sound basis for development in order to serve a variety of purposes: - as a guide for implementors and designers; - for use in the testing and procurement of equipment; - as part of an agreement for the admittance of systems into the open systems environment; - as a refinement to the understanding of time-critical communications within QSI. This standard is concerned, in particular, with the communication and interworking of sensors, effectors and other automation devices. By using this standard together with other standards positioned within the OSI or fieldbus reference models, otherwise incompatible systems may work together in any combination. iTex Syntaxus (https://scapaxus.iteh.ai) Dycument Preview https://standards.iteh.ai/ https://standards.iteh.ai/ yanda ls/as/3b 46648-dbed-48dc-b056-36f3b8f39754/iec-61158-6-20-2007 # INDUSTRIAL COMMUNICATION NETWORKS – FIELDBUS SPECIFICATIONS – # Part 6-20: Application layer protocol specification – Type 20 elements # 1 Scope #### 1.1 General The fieldbus Application Layer (FAL) provides user programs with a means to access the fieldbus communication environment. In this respect, the FAL can be viewed as a "window between corresponding application programs." This standard provides common elements for basic time-critical and non-time-critical messaging communications between application programs in an automation environment and material specific to Type 20 fieldbus. The term "time-critical" is used to represent the presence of a time-window, within which one or more specified actions are required to be completed with some defined level of certainty. Failure to complete specified actions within the time window risks failure of the applications requesting the actions, with attendant risk to equipment, plant and possibly human life. This standard defines in an abstract way the externally visible behavior provided by the Type 20 of the fieldbus Application Layer in terms of - a) the abstract syntax defining the application layer protocol data units conveyed between communicating application entities, - b) the transfer syntax defining the application layer protocol data units conveyed between communicating application entities. - c) the application context state machine defining the application service behavior visible between communicating application entities; and - d) the application relationship state machines defining the communication behavior visible between communicating application entities; and. The purpose of this standard is to define the protocol provided to define - 1) the wife-representation of the service primitives defined in IEC 61158-5-20, and - 2) the externally visible behavior associated with their transfer. This standard specify the protocol of the Type 20 IEC fieldbus application layer, in conformance with the OSI Basic Reference Model (ISO/IEC 7498) and the OSI Application Layer Structure (ISO/IEC 9545). # 1.2 Specifications The principal objective of this standard is to specify the syntax and behavior of the application layer protocol that conveys the application layer services defined in IEC 61158-5-20. A secondary objective is to provide migration paths from previously-existing industrial communications protocols. It is this latter objective which gives rise to the diversity of protocols standardized in IEC 61158-6. # 1.3 Conformance This standard does not specify individual implementations or products, nor does it constrain the implementations of application layer entities within industrial automation systems. Conformance is achieved through implementation of this application layer protocol specification. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60559, Binary floating-point arithmetic for microprocessor systems IEC 61158-5-20, Industrial communication networks – Fieldbus specifications – Part 5-20: Application layer service definition – Type 20 elements ISO/IEC 7498-1, Information technology – Open Systems Interconnection – Basic Reference Model – Part 1: The Basic Model ISO/IEC 8824, Information technology – Open Systems Interconnection – Specification of Abstract Syntax Notation One (ASN.1) ISO/IEC 8859-1, Information technology – 8-bit single byte coded graphic character sets – Part 1: Latin alphabet No. 1 ISO/IEC 9545, Information technology — Open Systems Interconnection — Application Layer structure 58-6-20:2007 https://standards.iteh.ai/ # 3 Terms, definitions, symbols, abbreviations and conventions For the purposes of this document, the following definitions apply. #### 3.1 Terms and definitions from other ISO/IEC standards #### 3.1.1 Terms and definitions from ISO/IEC 7498-1 - a) abstract syntax - b) application entity - c) application process - d) application protocol data unit - e) application service element - f) application entity invocation - g) application process invocation - h) application transaction - i) presentation context - j) real open system - k) transfer syntax #### 3.1.2 Terms and definitions from ISO/IEC 9545 - a) application-association - b) application-context - c) application context name - d) application-entity-invocation - e) application-entity-type - f) application-process-invocation - g) application-process-type - h) application-service element - i) application control service element # 3.1.3 Terms and definitions from ISO/IEC 8824 - a) object identifier - b) type - c) value - d) simple type - e) structured type - f) component type - g) tag - i) true - j) false - k) integer type - m) octet string type - n) null type - o) sequence type - p) sequence of type - q) choice type - r) tagged type - s) any type - t) module - u) production # 3.1.4 Terms and definitions from ISO/IEC 8825 - a) encoding (of a data value) - b) data value - c) identifier octets (the singular form is used in this standard) - d) length octet(s) (both singular and plural forms are used in this standard) - e) contents octets # 3.2 IEC/TR 61158-1 terms The following IEC/TR 61158-1 terms apply. #### 3.2.1 application function or data structure for which data is consumed or produced ## 3.2.2 application layer interoperability capability of application entities to perform coordinated and cooperative operations using the services of the FAL #### 3.2.3 application object object class that manages and provides the run time exchange of messages across the network and within the network device NOTE: Multiple types of application object classes may be defined #### 3.2.4 application process part of a distributed application on a network, which is located on one device and unambiguously addressed # 3.2.5 application process identifier identifier that distinguishes among multiple application processes used in a device # 3.2.6 application process object component of an application process that is identifiable and accessible through an FAL application relationship NOTE Application process object definitions are composed of a set of values for the attributes of their class (see the definition for Application Process Object Class Definition). Application process object definitions may be accessed remotely using the services of the FAL Object Management ASE. FAL Object Management services can be used to load or update object definitions, to read object definitions, and to dynamically create and delete application objects and their corresponding definitions. # 3.2.7 application process object class a class of application process objects defined in terms of the set of their network-accessible attributes and services #### 3.2.8 application relationship cooperative association between two or more application-entity-invocations for the purpose of exchange of information and coordination of their joint operation NOTE This relationship is activated either by the exchange of application-protocol-data-units or as a result of preconfiguration activities ## 3.2.9 application relationship application service element application-service-element that provides the exclusive means for establishing and terminating all application relationships ## 3.2.10 application relationship endpoint context and behavior of an application relationship as seen and maintained by one of the application processes involved in the application relationship NOTE Each application process involved in the application relationship maintains its own application relationship endpoint. #### 3.2.11 attribute description of an externally visible characteristic or feature of an object NOTE The attributes of an object contain information about variable portions of an object. Typically, they provide status information or govern the operation of an object. Attributes may also affect the behaviour of an object. Attributes are divided into class attributes and instance attributes. #### 3.2.12 behaviour indication of how the object responds to particular events. Its description includes the relationship between attribute values and services #### 3.2.13 class set of objects, all of which represent the same kind of system component NOTE A class is a generalisation of the object; a template for defining variables and methods. All objects in a class are identical in form and behaviour, but usually contain different data in their attributes. #### 3.2.14 class attributes attribute that is shared by all objects within the same class #### 3.2.15 class code unique identifier assigned to each object class # 3.2.16 class specific service service defined by a particular object class to perform a required function which is not performed by a common service NOTE A class specific object is unique to the object class which defines it. #### 3.2.17 client - (a) an object which uses the services of another (server) object to perform a task - (b) an initiator of a message to which a server reacts, such as the role of an AR endpoint in which it issues confirmed service request APDUs to a single AR endpoint acting as a server # 3.2.18 conveyance path unidirectional flow of APDUs across an application relationship ## 3.2.19 cyclic term used to describe events which repeat in a regular and repetitive manner ## 3.2.20 dedicated AR AR used directly by the FAL User. On Dedicated ARs, only the FAL Header and the user data are transferred #### 3.2.21 device a physical hardware connection to the link. A device may contain more than one node