INTERNATIONAL STANDARD

ISO 8687

First edition 1987-08-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Cinematography — Signal-to-noise ratio of 8 mm type S, 16 mm and 35 mm variable-area photographic sound records — Method of measurement

Cinématographie — Rapport signal/bruit des enregistrements sonores photographiques à surface variable de films 8 mm type S, 16 mm et 35 mm — Méthode de mesurage

Document Preview

ISO 8687:1987

https://standards.iteh.ai/catalog/standards/iso/a594edde-10ed-4d09-91d5-e438ecd3eef6/iso-1687-1987

Reference number ISO 8687: 1987 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 8687 was prepared by Technical Committee ISO/TC 36, Cinematography.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to any other International Standard implies its latest edition, unless otherwise stated.

ISO 8687:1987

https://standards.iteh.ai/catalog/standards/iso/a594edde-10ed-4d09-91d5-e438ecd3eef6/iso-8687-1987

Cinematography — Signal-to-noise ratio of 8 mm type S, 16 mm and 35 mm variable-area photographic sound records — Method of measurement

Scope and field of application

This International Standard specifies a preferred method and an alternative method for measuring the signal-to-noise ratio of 8 mm type S, 16 mm and 35 mm variable-area photographic sound records.

2 Reference

CCIR Recommendation 468-2, Measurement of audiofrequency noise in sound broadcasting, in sound-recording systems and on sound programme circuits.

3 Definitions

For the purpose of this International Standard the following definitions apply.

- **3.1** biased, unmodulated sound record: A sound record made with no input to the photographic sound recorder, but with noise-reduction biasing used in conjunction with normal practice for the recorder being used.
- **3.2 fully modulated sound record**: A sound record which has an amplitude equal to the maximum amplitude permitted by the applicable International Standard defining the dimensions of the photographic sound records. (See clause 7.)
- **3.3** system noise: The noise output of the reproducer under running conditions with lamp on, but no film.
- **3.4** unbiased, unmodulated sound record: A sound record made with no input to the photographic sound recorder and with no noise reduction biasing.
- **3.5** weighting network: A circuit which alters the frequency response of the measuring apparatus by a prescribed amount to provide agreement between the measured signal-tonoise ratio and the subjective impression of noise.

4 Apparatus

4.1 Measuring devices

Two types of measuring devices may be used (see the annex, clauses A.4 and A.5):

- a) For the preferred method, type CCIR consists of a weighting network with unity gain at 1 000 Hz and a quasipeak response voltmeter. The system is described in 4.1.1 and is in accordance with CCIR Recommendation 468-2.
- b) For the alternative method, type CCIR/ARM consists of a weighting network with unity gain at 2 000 Hz and an average responding voltmeter, calibrated to the root-mean-square response for a sine wave. The system is described in 4.1.2.

Type CCIR measurements should be made when the system to be measured contains significant amounts of impulse noise. The readings made on the two measuring systems are generally different and cannot be compared. The type of measurement used shall be stated when giving the result.

4.1.1 CCIR measuring apparatus

An acceptable signal-to-noise measuring apparatus is shown in figure 1 and consists of the following items.

4.1.1.1 Weighting network

The insertion gain of the CCIR weighting network shall vary with the frequency in accordance with the numerical values shown in the third column of table 1.

The permissible differences between the response curve of the measuring network and the nominal response of the weighting network shall be as shown in the last column of table 1.

A means shall be provided for bypassing or defeating the weighting network.

4.1.1.2 Voltmeter

4.1.1.2.1 Response to single tone bursts

The CCIR voltmeter shall provide a voltage indication proportional to the quasi-peak value of the signal, as follows.

The meter shall respond to single tone bursts as shown in table 2. The method of measurement shall be as follows: single bursts of 5 kHz tone shall be applied to the input at an amplitude so that the steady signal gives a reading of 80 % of full scale. The limits of reading corresponding to each duration of tone burst are given in table 2.

The tests shall be performed both without adjustment of the attenuators with the readings being observed directly from the instrument scale, and also with the attenuators adjusted for each burst duration to maintain the reading as nearly constant at 80 % of full scale as the attenuator steps permit.

4.1.1.2.2 Response to repetitive tone bursts

The meter shall respond to repetitive tone bursts as shown in table 3. The method of measurement shall be as follows: a series of 5 ms bursts of 5 kHz tone shall be applied to the input at an amplitude so that the steady signal gives a reading of 80 % of full scale. The limits of reading corresponding to each repetition frequency are given in table 3.

The tests shall be performed without adjustment of the attenuators but the characteristic shall be within tolerances on all ranges.

4.1.1.2.3 Overload characteristics

The overload capacity of the measuring set should be more than 20 dB with respect to the maximum indication of the scale at all settings of the attenuators. The term "overload capacity" refers to both the absence of clipping in linear stages and to retention of the law of any logarithmic or similar stage which may be incorporated. Overload capacity shall be measured as follows: isolated 5 kHz tone bursts of duration 0,5 ms shall be applied to the input at an amplitude giving full-scale reading using the most sensitive range of the instrument. The amplitude of the tone bursts shall be decreased in steps by a total of 20 dB while the readings are observed to check that they decrease by corresponding steps within an overall tolerance of \pm 1 dB. The test shall be repeated for each range.

4.1.1.2.4 Reversibility error

The difference in reading when the polarity of an asymmetric signal is reversed shall not be greater than 0,5 dB when measured as follows: isolated 1 ms rectangular pulses shall be applied to the input in the unweighted mode, at an amplitude giving an indication of 80 % of full scale. The polarity of the input signal shall be reversed and the difference in indication shall be noted.

4.1.1.2.5 Overswing

The reading device shall be free from excessive overswing when measured as follows: when a 1 kHz tone is suddenly applied to the input at an amplitude which gives a steady reading of 0,775 V (or 0 dB), the momentary excess reading shall be less than 0,3 dB.

Table 1 — Weighting curve

Frequency	CCIR/ARM insertion gain	CCIR insertion gain	Tolerance	
Hz	dB	dB	dB	
31,5	- 35,5	- 29,9	± 2,00	
63,0	- 29,5	- 23,9	± 1,40*	
100,0	_ 25,4	- 19,8	± 1,00	
200,0	- 19,4	- 13,8	± 0,85*	
400,0	- 13,4	- 7,8	± 0,70*	
800,0	- 7,5	– 1,9	± 0,55*	
1 000,0	- 5,6	0,0	± 0,50	
2 000,0	0,0	+ 5,6	± 0,50*	
3 150,0	+ 3,4	+ 9,0	± 0,50*	
4 000,0	+ 4,9	+ 10,5	± 0,50*	
5 000,0	+ 6,1	+ 11,7	± 0,50	
6 300,0	+ 6,6	+ 12,2	0,00	
e-17:100,0 dU	7-91d -6,4 438	cd3+12,0180-	6 0 ± 0,20*	
8 000,0	+ 5,8	+ 11,4	± 0,40*	
9 000,0	+ 4,5	+ 10,1	± 0,60*	
10 000,0	+ 2,5	+ 8,1	± 0,80*	
12 500,0	- 5,6	0,0	± 1,20*	
14 000,0	- 10,9	- 5,3	± 1,40*	
16 000,0	- 17,3	- 11,7	± 1,65*	
20 000,0	- 27,8	- 22,2	± 2,00	
31 500,0	– 48,3	- 42,7	+ 2,80*	
			- &	

^{*} This tolerance is obtained by linear interpolation on a logarithmic graph on the basis of values specified for the frequencies used to define the mask, i.e. 31,5; 100; 1 000; 5 000; 6 300; and 20 000 Hz.

Table 2 - Single tone burst response

Burst duration (ms)*		1	2	5	10	20	50	100	200
Amplitude reference steady signal reading	(%)	17,0	26,6	40	48	52	59	68	80
	(dB)	- 15,4	- 11,5	- 8,0	- 6,4	- 5,7	- 4,6	- 3,3	1,9
Limiting values									-
Lower limit	(%)	13,5	22,4	34	41	44	50	58	68
	(dB)	- 17,4	- 13,0	9,3	- 7,7	- 7,1	6,0	- 4,7	- 3,3
·· Upper limit	(%)	21,4	31,6	46	55	60	68	78	92
	(dB)	- 13,4	- 10,0	- 6,6	- 5,2	- 4,4	- 3,3	- 2,2	- 0,7

^{*} The rise- and fall-time of the burst envelope should be less than 5 μs.