SLOVENSKI STANDARD

SIST EN 61400-12-1:2006

november 2006

Vetrne turbine – 12-1. del: Preskušanje zmogljivosti vetrnih turbin za proizvodnjo električne energije (IEC 61400-12-1:2005)

Wind turbines - Part 12-1: Power performance measurements of electricity producing wind turbines (IEC 61400-12-1:2005)

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

EUROPEAN STANDARD

EN 61400-12-1

NORME EUROPÉENNE EUROPÄISCHE NORM

June 2006

ICS 27.180

Supersedes EN 61400-12:1998

English version

Wind turbines Part 12-1: Power performance measurements of electricity producing wind turbines

(IEC 61400-12-1:2005)

Eoliennes
Partie 12-1: Mesures des performances
de puissance des éoliennes
de production d'électricité
(CEI 61400-12-1:2005)

Windenergieanlagen Teil 12-1: Messung des Leistungsverhaltens einer Windenergieanlage (IEC 61400-12-1:2005)

iTeh STANDARD PREVIEW

This European Standard was approved by CENELEC on 2006-05-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard

the status of a national standard without any alteration 12-1:2006 https://standards.iteh.ai/catalog/standards/sist/8be45740-3193-4630-a808-

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

Foreword

The text of document 88/244/FDIS, future edition 1 of IEC 61400-12-1, prepared by IEC TC 88, Wind turbines, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as EN 61400-12-1 on 2006-05-01.

This European Standard supersedes EN 61400-12:1998.

The following dates were fixed:

 latest date by which the EN has to be implemented at national level by publication of an identical national standard or by endorsement

(dop) 2007-02-01

- latest date by which the national standards conflicting with the EN have to be withdrawn

(dow) 2009-05-01

Annex ZA has been added by CENELEC.

Endorsement notice

The text of the International Standard IEC 61400-12-1:2005 was approved by CENELEC as a European Standard without any modification TANDARD PREVIEW

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 60044-2 NOTE Harmonized as EN 60044-2;1999 +A1:2000 +A2:2003 (not modified).

https://standards.iteh.ai/catalog/standards/sist/8be45740-3193-4630-a808-NOTE Harmonized as EN 61400-1;2005 (not modified).

IEC 61400-1

Annex ZA (normative)

Normative references to international publications with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

<u>Publication</u>	<u>Year</u>	<u>Title</u>	EN/HD	<u>Year</u>
IEC 60044-1 (mod) + A1 + A2	1996 2000 2002	Instrument transformers - Part 1: Current transformers	EN 60044-1 + A1 + A2	1999 2000 2003
IEC 60688 + A1 (mod) + A2	1992 1997 2001	Electrical measuring transducers for converting a.c. electrical quantities to analogue or digital signals	EN 60688 + A1 + A2	1992 1999 2001
IEC 61400-2	1996 iTe	Wind turbine generator systems - Part 2: Safety of small wind turbines	EN 61400-2	1996
ISO 2533	1975	Standard atmosphere (standards.iteh.ai)	-	-
ISO/IEC Guide Expres	1995	Guide to the expression of uncertainty in measurement (GUM)	-	-

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTERNATIONAL STANDARD

IEC 61400-12-1

First edition 2005-12

Wind turbines -

Part 12-1: Power performance measurements of electricity producing wind turbines

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 61400-12-1:2006 https://standards.iteh.ai/catalog/standards/sist/8be45740-3193-4630-a808-b131b6be64e1/sist-en-61400-12-1-2006

© IEC 2005 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

PRICE CODE

CONTENTS

FO	REWORD	5
INT	RODUCTION	7
1	Scope	8
2	Normative references	8
3	Terms and definitions	9
4	Symbols and units	11
5	Preparation for performance test	
	5.1 Wind turbine and electrical connection	
	5.2 Test site	14
6	Test equipment	16
	6.1 Electric power	16
	6.2 Wind speed	16
	6.3 Wind direction	17
	6.4 Air density	
	6.5 Rotational speed and pitch angle	
	6.6 Blade condition	
	6.7 Wind turbine control system	
7	6.8 Data acquisition system. ANDARD PREVIEW Measurement procedure	18
7		18
	7.1 General (Standards.Iten.al) 7.2 Wind turbine operation	
	7.3 Data collection	
	7.4 Data rejection standards.iteh.ai/catalog/standards/sist/8be45740-3193-4630-a808-	10
	7.5 Data correction b131b6be64e1/sist-en-61400-12-1-2006	19
	7.6 Database	
8	Derived results	
	8.1 Data normalization	20
	8.2 Determination of the measured power curve	21
	8.3 Annual energy production (AEP)	21
	8.4 Power coefficient	22
9	Reporting format	23
Anr	nex A (normative) Assessment of obstacles at the test site	33
Anr	nex B (normative) Assessment of terrain at the test site	36
Anr	nex C (normative) Site calibration procedure	37
Anr	nex D (normative) Evaluation of uncertainty in measurement	39
	nex E (informative) Theoretical basis for determining the uncertainty of asurement using the method of bins	11
	-	
	nex G (normative) Mounting of instruments on the meteorological mast	
	nex H (normative) Power performance testing of small wind turbines	
	nex I (normative) Classification of anemometry	
	nex J (informative) Assessment of cup anemometry	
Anr	nex K (informative) In situ comparison of anemometers	88
Bib	liography	90

allowed measurements as to distance of the meteorological mast and maximum	15
Figure 2 – Presentation of example database A and B: power performance test scatter plots sampled at 1 Hz (mean values averaged over 10 min)	26
Figure 3 – Presentation of example measured power curve for databases A and B	27
Figure 4 – Presentation of example C_{p} curve for databases A and B	28
Figure 5 – Presentation of example site calibration (only the sectors 20° to 30°, 40° to 60°, 160° to 210° and 330° to 350° are valid sectors)	29
Figure A.1 – Sectors to exclude due to wakes of neighbouring and operating wind turbines and significant obstacles	34
Figure A.2 – An example of sectors to exclude due to wakes of the wind turbine under test, a neighbouring and operating wind turbine and a significant obstacle	35
Figure B.1 – Illustration of area to be assessed, top view	36
Figure G.1 – Example of a top-mounted anemometer and requirements for mounting	66
Figure G.2 – Example of alternative top-mounted primary and control anemometers positioned side-by-side and wind vane and other instruments on the boom	67
Figure G.3 – Example of a top-mounted anemometer and mounting of control anemometer, wind vane and other sensors on a boom	68
Figure G.4 – Example of top-mounted primary and control anemometers positioned side-by-side, wind vane and other instruments on the boom	69
Figure G.5 – Iso-speed plot of local flow speed around a cylindrical mast, normalised by free-field wind speed (from the left); analysis by 2 dimensional Navier-Stokes computations	70
Figure G.6 – Centre-line relative wind speed as a function of distance R from the centre of a tubular mast and mast diameter of dards/sist/8be45740-3193-4630-a808-	70
Figure G.7 – Representation of a three-legged lattice mast showing the centre-line wind speed deficit, the actuator disc representation of the mast with the leg distance L and distance R from the centre of the mast to the point of observation	71
Figure G.8 – Iso-speed plot of local flow speed around a triangular lattice mast with a C_{T} of 0,5 normalised by free-field wind speed (from the left); analysis by 2 dimensional Navier-Stokes computation and actuator disc theory	72
Figure G.9 – Centre-line relative wind speed as a function of distance R from the centre of a triangular lattice mast of face width L for various C_{T} values	72
Figure J.1 – Measured angular response of a cup anemometer compared to cosine response	79
Figure J.2 – Wind tunnel torque measurements on a cup anemometer at 8 m/s	80
Figure J.3 – Example of bearing friction torque measurements	81
Figure J.4 – Distribution of vertical wind speed components assuming a fixed ratio between horizontal and vertical standard deviation in wind speed	82
Figure J.5 – Calculation of the total deviation with respect to the cosine response	83
Figure J.6 – Probability distributions for three different average angles of inflow	84
Figure J.7 – Total deviation from cosine response for three different average angles of inflow over horizontal turbulence intensity	84
Figure J.8 – Example of an anemometer that does not fulfil the slope criterion	
Figure J.9 – Example of deviations of a Class 2.0A cup anemometer	

Table 1 – Example of presentation of a measured power curve for database A	30
Table 2 – Example of presentation of a measured power curve for database B	31
Table 3 – Example of presentation of estimated annual energy production (database A)3	32
Table 4 – Example of presentation of estimated annual energy production (database B)3	32
Table B.1 – Test site requirements: topographical variations	36
Table D.1 – List of uncertainty components	10
Table E.1 – Expanded uncertainties	13
Table E.2 – List of categories B and A uncertainties	15
Table E.3 – Uncertainties from site calibration	53
Table E.4 – Sensitivity factors (database A)	54
Table E.5 – Sensitivity factors (database B)	55
Table E.6 – Category B uncertainties (database A)	56
Table E.7 – Category B uncertainties (database B)	57
Table F.1 – Example of evaluation of anemometer calibration uncertainty6	32
Table G.1 – Estimation method for C_T for various types of lattice tower	73
Table H.1 – Battery bank voltage settings	
Table I.1 - Influence parameter ranges (based on 10 min averages) of Classes A and B7	78
(standards.iteh.ai)	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

WIND TURBINES -

Part 12-1: Power performance measurements of electricity producing wind turbines

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
 consensus of opinion on the relevant subjects since each technical committee has representation from all
 interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.

 SIST EN 61400-12-12006
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication 12-1-2006
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61400-12-1 has been prepared by IEC technical committee 88: Wind turbines.

This standard cancels and replaces IEC 61400-12 published in 1998. This first edition of IEC 61400-12-1 constitutes a technical revision. IEC 61400-12-2 and IEC 61400-12-3 are additions to IEC 61400-12-1.

The text of this standard is based on the following documents:

FDIS	Report on voting	
88/244/FDIS	88/251/RVD	

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

IEC 61400-12 consists of the following parts, under the general title Wind turbines:

Part 12-1: Power performance measurements of electricity producing wind turbines

Part 12-2: Verification of power performance of individual wind turbines (under consideration)

Part 12-3: Wind farm power performance testing (under consideration)

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed:
- · withdrawn;
- · replaced by a revised edition, or
- · amended.

A bilingual version of this standard may be issued at a later date.

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTRODUCTION

The purpose of this part of IEC 61400 is to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of power performance by wind turbines. The standard has been prepared with the anticipation that it would be applied by:

- a wind turbine manufacturer striving to meet well-defined power performance requirements and/or a possible declaration system;
- a wind turbine purchaser in specifying such performance requirements;
- a wind turbine operator who may be required to verify that stated, or required, power performance specifications are met for new or refurbished units;
- a wind turbine planner or regulator who must be able to accurately and fairly define power performance characteristics of wind turbines in response to regulations or permit requirements for new or modified installations.

This standard provides guidance in the measurement, analysis, and reporting of power performance testing for wind turbines. The standard will benefit those parties involved in the manufacture, installation planning and permitting, operation, utilization, and regulation of wind turbines. The technically accurate measurement and analysis techniques recommended in this standard should be applied by all parties to ensure that continuing development and operation of wind turbines is carried out in an atmosphere of consistent and accurate communication relative to environmental concerns. This standard presents measurement and reporting procedures expected to provide accurate results that can be replicated by others. Meanwhile, a user of the standard should be aware of differences that arise from large variations in wind shear and turbulence, and from the chosen criteria for data selection. Therefore, a user should consider the influence of these differences and the data selection criteria in relation to the purpose of the test before contracting the power performance measurements.

SIST EN 61400-12-12006

https://standards.iteh.ai/catalog/standards/sist/8be45740-3193-4630-a808-

A key element of power performance testing is the measurement of wind speed. This standard prescribes the use of cup anemometers to measure the wind speed. This instrument is robust and has long been regarded as suitable for this kind of test. Even though suitable wind tunnel calibration procedures are adhered to, the field flow conditions associated with the fluctuating wind vector, both in magnitude and direction, will cause different instruments to potentially perform differently.

Tools and procedures to classify cup anemometers are given in Annexes I and J. However there will always be a possibility that the result of the test can be influenced by the selection of the wind speed instrument. Special care should therefore be taken in the selection of the instruments chosen to measure the wind speed.

WIND TURBINES -

Part 12-1: Power performance measurements of electricity producing wind turbines

1 Scope

This part of IEC 61400 specifies a procedure for measuring the power performance characteristics of a single wind turbine and applies to the testing of wind turbines of all types and sizes connected to the electrical power network. In addition, this standard describes a procedure to be used to determine the power performance characteristics of small wind turbines (as defined in IEC 61400-2) when connected to either the electric power network or a battery bank. The procedure can be used for performance evaluation of specific turbines at specific locations, but equally the methodology can be used to make generic comparisons between different turbine models or different turbine settings.

The wind turbine power performance characteristics are determined by the measured power curve and the estimated annual energy production (AEP). The measured power curve is determined by collecting simultaneous measurements of wind speed and power output at the test site for a period that is long enough to establish a statistically significant database over a range of wind speeds and under varying wind and atmospheric conditions. The AEP is calculated by applying the measured power curve to reference wind speed frequency distributions, assuming 100 % availability ards. iteh.ai

The standard describes a measurement methodology that requires the measured power curve and derived energy production figures to be supplemented by an assessment of uncertainty sources and their combined effects: catalog/standards/sist/8be45740-3193-4630-a808-

b131b6be64e1/sist-en-61400-12-1-2006

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60044-1:1996, Instrument transformers – Part 1: Current transformers Amendment 1 (2000)
Amendment 2 (2002)¹

IEC 60688:1992, Electrical measuring transducers for converting a.c. electrical quantities to analogue or digital signals

Amendment 1 (1997)

Amendment 2 (2001)²

IEC 61400-2:1996, Wind turbine generator systems – Part 1: Safety of small wind turbines

ISO 2533:1975, Standard atmosphere

ISO Guide to the expression of uncertainty in measurement, 1995, ISBN 92-67-10188-9

 $^{^{}m 1}$ There exists a consolidated edition 1.2 (2003) that includes edition 1 and its amendments 1 and 2.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

accuracy

closeness of the agreement between the result of a measurement and a true value of the measurand

3.2

annual energy production

AEP

estimate of the total energy production of a wind turbine during a one-year period by applying the measured power curve to different reference wind speed frequency distributions at hub height, assuming 100 % availability

3.3

complex terrain

terrain surrounding the test site that features significant variations in topography and terrain obstacles that may cause flow distortion

3.4

data set

collection of data that was sampled over a continuous period VIEW

(standards.iteh.ai)

distance constant

indication of the response time of an anemometer, defined as the length of air that must pass the instrument for it to indicate 63 % of the final value for a step input in wind speed

https://standards.iteh.ai/catalog/standards/sist/8be45740-3193-46

b131b6be64e1/sist-en-61400-12-1-2006

extrapolated power curve

extension of the measured power curve by estimating power output from the maximum measured wind speed to cut-out wind speed

3.7

3.6

flow distortion

change in air flow caused by obstacles, topographical variations, or other wind turbines that results in a deviation of the measured wind speed from the free stream wind speed and in a significant uncertainty

3.8

hub height (wind turbines)

height of the centre of the swept area of the wind turbine rotor above the ground at the tower

NOTE For a vertical axis wind turbine the hub height is the height of the equator plane.

3.9

measured power curve

table and graph that represents the measured, corrected and normalized net power output of a wind turbine as a function of measured wind speed, measured under a well-defined measurement procedure

3.10

measurement period

period during which a statistically significant database has been collected for the power performance test