
INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION
MEXAYHAPOAHAR OPrAHM3A~lflR il0 CTAHAAPTMJAUMM

Banking - Approved algorithm for message
authentication -
Part 2 :
Message aut hen tica tor al go rit hms

Banque - Algorithmes approuvés pour I'authentification des messages -
Partie 2 : Algorithme d'authentification des messages

[SO
873 1-2
First edition
1987-12-1 5

Reference number
IS0 8731-2: 1987 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

Foreword
IS0 (the International Organization for Standardization) is a worldwide federation of
national standards bodies (IS0 member bodies). The work of preparing International
Standards is normally carried out through IS0 technical committees. Each member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to
the member bodies for approval before their acceptance as International Standards by
the IS0 Council. They are approved in accordance with IS0 procedures requiring at
least 75 % approval by the member bodies voting.

International Standard IS0 8731-2 was prepared by Technical Committee ISO/TC 68,
Banking and related financial services.

Users should note that all International Standards undergo revision from time to time
and that any reference made herein to any other International Standard implies its
latest edition, unless otherwise stated.

O International Organization for Standardization, 1987 O

Printed in Switzerland

ii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

IS0 8731-2 : 1987 (E)

Contents Page

1 Scope and field of application ..

2 Reference .

3 Brief description ...

3.1 General .

3.2 Technical ...

4 The algorithm ...

4.1 Definition of the functions used in the algorithm
4.2 Specification of the algorithm

5 Specification of the mode of operation

Annex

Test examples for implementation of the algorithm

.

.

.

.

.

1

1

1

1

1

1

1

3

3

5

iii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

INTERNATIONAL STANDARD IS0 8731-2 : 1987 (E)

Banking - Approved algorithm for message
authentication -

Part 2 :
Message a ut hen t ica tor a Ig or it h ms

1 Scope and field of application

IS0 8731 specifies, in individual parts, approved authentication
algorithms i.e. approved as meeting the authentication
requirements specified in IS0 8730. This part of IS0 8731 deals
with the Message Authenticator Algorithm for use in the
calculation of the Message Authentication Code (MAC).

The Message Authenticator Algorithm (MAA) is specifically
designed for high speed authentication using a mainframe
computer. This is a special purpose algorithm to be used where
data volumes are high, and efficient implementation by soft-
ware a desirable characteristic. MAA is also suitable for use
with a programmable calculator.

Test examples are given in an amex, which does not form part
of this International Standard.

2 Reference

IS0 8730, Banking - Requirements for message authentica-
tion (wholesalel.

3 Brief description

3.1 General

The Message Authenticator Algorithm works on the principle
of a Message Authentication Code (or MAC), a number sent
with a message, so that a check can be made by the receiver of
the message that it has not been altered since it left the sender.

3.2 Technical

All numbers manipulated in this algorithm shall be regarded as
32-bit unsigned integers, unless otherwise stated. For such a
number N, O < N < 232. This algorithm can be implemented
conveniently and efficiently in a computer with a word length
of 32 bits or more.

Messages to be authenticated may originate as a bit string of
any length. They shall be input to the algorithm as a sequence
of 32 bit numbers, MI, M2 - M,, of which there are n, called
message blocks. The detail of how to pad out the last block M,

to 32 bits is not part of the algorithm but shall be defined in any
application. This algorithm shall not be used to authenticate
messages with more than 1 000 O00 blocks, i.e. n < 1 O00 000.

The key shall comprise two 32 bit numbers J and K and thus
has a size of 64' bits.

The result of the algorithm is a 32 bit authenticator value
denoted 2. The calculation can be performed on messages as
short as one block (n = 1).

The calculation has three parts

al The prelude shall be a calculation made with the keys
(J and K I alone and it shall generate six numbers Xo, Yo, Vo,
W, S and T which shall be used in the subsequent calcula-
tions. This part need not be repeated until a new key is
installed.

b) The main loop is a calculation which shall be repeated
for each message block Mi and therefore, for long
messages, dominates the calculation.

c) The coda shall consist of two operations of the main
loop, using as its message blocks the two numbers S and T
in turn, followed by a simple calculation of 2, the authen-
ticator.

The mode of operation (see clause 5) is an essential feature of
the implementation of this algorithm.

The figure shows the data flow in schematic form.

4 The algorithm

4.1
algorithm

Definition of the functions used in the

4.1.1 General definitions

A number of functions are used in the description of the
algorithm. In the following, X and Y are 32 bit numbers and the
result is a 32 bit number except where stated otherwise.

CYC(X)

AND(X,Y)

is the result of a one-bit cyclic left shift of X.

is the result of the logical AND operation carried
out on each of 32 bits.

1

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

OR(X,Y) is the result of the logical OR operation carried
out on each of 32 bits.

XOR(X,Y) is the result of the XOR operation (modulo 2
addition) carried out on each of 32 bits.

ADD(X,Y) is the result of adding X and Y discarding any
carry from the 32nd bit, that is to say, addition
modulo 232.

CAR(X,Y) is the value of the carry from the 32nd bit when
X is added to Y; it has the value O or 1.

MULl(X,Y), MUL2(X,Y) and MUL2A(X,Y)
are three different forms of multiplication, each
with a 32 bit result.

4.1.2 Definition of multiplication functions

To explain the multiplications, let the 64 bit product of X and Y
be [U,Ll. Here the square brackets mean that the values enclos-
ed are concatenated, U on the left of L. Hence U is the upper
(most significant) half of the product and L the lower (least
significant) half.

4.1.2.1 To calculate MULl(X,Y)

Multiply X and Y to produce [U,L]. With S and C as local
variables,

S : = ADD(U,L); ... (1)

C := CAR(U,L); ... (2)

MULl(X,Y) : = ADD(S,C). ... (3)

That is to say, U shall be added to L with end around carry.

Numerically the result is congruent to X*Y, the product of X
and Y, modulo (232 - 1). It is not necessarily the smallest
residue because it may equal 232 - 1.

4.1.2.2 To calculate MUL2(X,Y)

This form of multiplication shall not be used in the main loop,
only in the prelude. With D, E, F, S and C as local variables,

D : = ADD(U,U); ... (4)

E := CAR(U,U); ... (5)

F : = ADD(D,PE); ... (6)

S : = ADD(F,L); ... (7)

C := CAR(F,L); ... (8)

MUL2(X,Y) : = ADD(S,2C). ... (9)
Numerically the result is congruent to X*Y, the product of X
and Y, modulo (232 - 2). It is not necessarily the smallest
residue because it may equal 232 - 1 or 232 - 2.

4.1.2.3 To calculate MUL2A(X,Y)

This is a simplified form of MUL2(X,Y) used in the main loop,
which yields the correct result only when at least one of the
numbers X and Y has a zero in its most significant bit.

This form of multiplication is employed for economy in process-
ing. D, S , C are local variables.

D : = ADD(U,U); ... (I O)
S : = ADD(D,L); ... (11)
C := CAR(D,L); ... (12)
MULPA(X,Y) : = ADD(S.2C). ... (13)

The result is congruent to X*Y modulo (232 - 2) under the
conditions stated because, in the notation of MUL2(X,Y)
above, the carry E = O.

4.1.3 Definition of the functions BYT[X,Yl and PAT[X,YI

A procedure is used in the prelude to condition both the keys
and the results in order to prevent long strings of ones or zeros.
It produces two results which are the conditioned values of
X and Y and a number PAT[X,YI which records the changes
that have been made. PAT[X,Yl < 255 so it is essentially an
8 bit number.

X and Y are regarded as strings of bytes. Using the notation
[X,Y ... I for concatenating,

M,YI = [Bo, Bi, B2, B3, B4, B5. B6, B71

Thus bytes Bo to B3 are derived from X and B4 to B, from Y.

The procedure is best described by a procedure where each
byte Bi is regarded as an integer of length 8 bits.

begin
P : = O;
for i : = O to 7 do
begin

P : = 2"P;
if Biil = O then
begin

P : = P + 1;
B'[il : = P

end
else if B[il = 255 then

begin
P : = P + 1;
B'[il : = 255 - P

end
else
B'[il : = B[il;
end

end;

2

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

IS0 8731-2 : 1987 (E)

NOTE - The procedure is written in the programming language
PASCAL (see IS0 71851, except that the non-standard identifier B‘ has
been used to maintain continuity with the text. The symbols Biil and
B‘[il correspond to Bi and B‘i in the text.

The results are

BYT[X,Yl = [BO, Bi, Bi, Ba, Bi , Bj , BS, B j l

and

PAT[X,Yl = P

4.2 Specification of the algorithm

4.2.1 The prelude

[J1,KIl := BYT[J,Kl;

P := PAT[JI KI;

Q : = (1 + P)*(1 + Pl. ... (14)

First, by means of a calculation using JI, produce H4, H6, and
H8 from which X,, Vo and S are derived.

From a similar calculation using K1, produce H5, H7 and Hg,
from which Y,, W and T are derived.

Hg : = XOR(KIg,K29). ... (19)

Finally, condition the results using the BYT function

4.2.2 The main loop

This loop shall be performed in turn for each of the message
blocks M,. In addition to M,, the principal values employed
shall be X and Y and the main results shall be the new values of
X and Y. It shall also use V and W and modify V at each perfor-
mance. X, Y and V shall be initialized with the values provided
by the prelude. In order to use the same keys again, the initial
values of X, Y and V shall be preserved, therefore they shall be
denoted Xo, Yo and Vo and there shall be an initializing step
X : = X,, Y : = Y,, V : = V,, after which the main loop shall be
entered for the first time. The coda, which shall be used after all
message blocks have been processed by n cycles of the loop, is
described in 4.2.3.

NOTE - The program is shown in columns to clarify its parallel operation
but it should be read in normal reading order, left to right on each line.

v : = CYC(V);
E : = XOR(V,W); ... (21)
X := XOR(X,Mj); Y : = XOR(Y,MJ; ... (22)
F := ADD(E,Y);
F : = OR(F,A);
F : = AND(F,C); G : = AND(G,D); ... (23)

... (24) X : = MULI(X,F);

The numbers A, B, C, D are constants which are, in
hexadecimal notation :

G := ADD(E,XI;
G := OR(G,B);

Y := MUL2A(Y,G).

Constant A : 0204 0801
Constant B : O080 4021
Constant C : BFEF 7FDF
Constant D : 7DFE FBFF

NOTE - Lines (21 1 are common to both paths. Line (22) introduces the
message block Mi. Lines (23) prepare the multipliers and line (24)
generates new X and Y values. Only X, Y and V are modified for use in
the next cycle. F and Gare local variables. Since the constant D has its
most significant digit zero, G < 231 and this ensures that MUL2A in
line (24) will give the correct result.

4.2.3 The coda

After the last message bloc(< M, has been processed, the main
loop shall be performed with message block S , then again with
block T, i.e. M, +

After this, the Message Authentication Code (MAC) shall be
calculated as 2 = XOR(X, Y) and the algorithm shall then be
complete.

NOTE - In order to calculate further MAC values without repeating
the prelude (key calculation) until the keys are changed the values XO,
YO, VO, W, S and T should be retained.

= S, M, + = T.

5 Specification of the mode of operation
Messages longer than 1 024 bytes shall be divided into blocks
of 1 024 bytes and chained as follows.

For the first block of 1 024 bytes the MAC (4 bytes) shall be
formed. The MAC value shall be prefixed to (but not transmit-
ted in) the second block and the resultant 1 028 bytes authen-
ticated. This procedure shall continue, with the MAC of each
block prefixed to the next, until the last block, which need not
be of size 1 024 bytes, and the final MAC shall be used as the
transmitted MAC for the whole message.

3

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

Keys

I I

J K

4

Prelude

Storage for
future use

Initialization

Main IOOD

Contains :

MULI
M U U A

Coda

I

Main loop

z

I I I

ek? Main loop

i

-
-7

I
I
I

I
I
I
I

I
I
I !

L---t------- -I z
Figure - Schematic showing data flow

Message

-FI
I I
i i
I I

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

IS0 8731-2 : 1987 (E)

Annex

Test examples for implementation of the ailgorithm
(This annex does not form part of this Standard.)

A.0 Introduction
For most parts of the algorithm, simple test examples are given. The data used are not always realistic, i.e. they are not values which
could be produced by earlier parts of the algorithm, and artificial values of constants are used. This is done to keep the test cases so
simple that they can be verified by a pencil and paper calculation and thus the verification of the algorithm's implementations does not
consist of comparing one machine implementation with another. The parts thus tested are

- MULI, MUL2, MUL2A;

- SYT[X,Yl and PAT[X,Yl;
-
- Main loop.

Prelude, except the initial BYT[J,Kl operation;

The coda is not tested separately because it uses only the main loop and one XOR function. For testing the whole algorithm, some
results from a trial implementation are given.

A . l Test examples for MULI, MUL2, MULSA
It is suggested that the multiplication operations should be tested with very small numbers and very large numbers. To represent a
large number these examples use the ones complement. Thus if a is a small number (say less than 4 096) the notation Tis used to
mean its complement, i.e. 232 - 1 - a.

For small numbers a and b, all three multiplication functions produce their true product a*b. When large numbers are used the func-
tions can give different results. They should be tested both ways round, with MUL(x,y) and MUL(y,x) to verify that these are equal.

A.l . l Test cases for MULI

In modulo (232 - 1) arithmetic ais effectively - a, therefore the results are very simple

MULI(ZH = MULI(U,~) = 2%
MULI(K~) = a*b

Examples for testing are given in table 1.

A.1.2 Test cases for MUL2

MUL2(Kb) = a*b - b + 1

MUL2(a,b) = a*b - a + 1

MUL2(g6) = a*b - U - b + 1
,

Examples for testing are given in table 1.

A.1.3 Test cases for MUL2A

This will give the same result as MUL2 when tested with numbers within its range. For testing with large numbers, Zand b - 231 shall
be used

_ ._ . _.

MUL2A(zb) = a*b - b + 1

MUL~A(U,~) = ~ * b - U + I
MUL2A(zb - 231) = 231 * (1 - p) + a*b + p - b - 1

where p is the parity of a; the value of its least significant bit.

5

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1987
https://standards.iteh.ai/catalog/standards/sist/531507e8-c10c-4749-bdfa-

6e4ed2b8bab5/iso-8731-2-1987

	0ŒÑ'£�ç˛:$aŽ,qÁ�”ÀãS;<R–þÇ0¨-�[g�ﬂ.¸²p°‡}Þ$�/(Bú¼h+
ı‡�ıcçàO¬°™µ\5G%

