
INTERNATIONAL
STANDARD 8731-2

Second edition
1992-09-l 5

- --___ ----

Banking - Approved algorithms for message
authentication -

Part 2:
Message authenticator algorithm

Banque - Algorithmes approwks pour l�arlthentifkatior~ des
messages -

Partie 2: Algorithme d’authel-,tificatiol-, des messages

- - . - - - - - - - - - - . - - - - -P- -P

__----- --_-.- __- _.-___- -- --__ -_ _

---- --.-- _ ___ - -_ _-- -.. _ . -- ._ -_.. -.
Reference number
IS0 873 1-2: 1992(E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

Contents Page

1 Scope .. 1

2 Normative references .. 1

3 Brief description. .. 1

3.1 General .. 1

3.2 Technical .. 1

4 The segment algorithm 1

4.1 Definition of the functions used in the algorithm. 1

4.2 Specification of the algorithm. 3

5 Specification of the mode of operation 3

Annexes

A Test examples for implementation of the algorithm. 5

B Specification of MAA in VDM. 9

0 IS0 1992
All rights reserved. No part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

International Organization for Standardization
Case Postale 56 l CH-1211 Genkve 20 l Switzerland

Printed in Switzerland

ii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

Foreword

IS0 (the International Organization for Standardization) is a worldwide
federation of national standards bodies (IS0 member bodies). The work
of preparing International Standards is normally carried out through IS0
technical committees. Each member body interested in a subject for
which a technical committee has been established has the right to be
represented on that committee. International organizations, govern-
mental and non-governmental, in liaison with ISO, also take par-t in the
work. IS0 collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are
circulated to the member bodies for voting. Publication as an Interna-
tional Standard requires approval by at least 75 % of the member bodies
casting a vote.

International Standard IS0 8731-2 was prepared by Technical Committee
ISO/TC 68, Banking and related financial services, Sub-Committee SC 2,
Operations and procedures.

This second edition cancels and replaces the first edition
(IS0 873%2:1987), of which it constitutes a technical revision.

IS0 8731 consists of the following parts, under the general title
Banking - Approved algorithms for message authentication:

-- Part 1: LEA

- Part 2: Message authenticator algorithm

Annexes A and 6 of this part of IS0 8731 are for information only.

. . .
III

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

This page intentionally left blank

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

INTERNATIONAL STANDARD IS0 8731-2 : 1992 (E)

Banking -- Approved algorithms for message
authentication --

Part2:
Message authenticator algorithm
1 Scope

IS0 8731 specifies, in individual parts, approved authentication
algorithms i.e. approved as meeting the authentication
requirements specified in IS0 8730. This part of IS0 8731
deals with the Message Authenticator Algorithm for use in the
calculation of the Message Authentication Code (MAC).

The Message Authenticator Algorithm (MAA) is specifically
designed for high-speed authentication using a mainframe
computer. This is a special purpose algorithm to be used
where data volumes are high, and efficient implementation by
software a desirable characteristic. MAA is also suitable for
use with a programmable calculator.

Test examples are given in annex A, which does not form
part of this part of IS0 8731. A further test example is given
as an Annex in IS0 8730.

A specification of MAA in VDM is given in Annex B, which
does not form part of this part of IS0 8731.

2 Normative references

The following standards contain provisions which, through
references in this text, constitute provisions of this part of IS0
8731. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to
agreements based on this part of IS0 8731 are encouraged to
investigate the possibility of applying the most recent editions
of the standards indicated below. Members of IEC and IS0
maintain registers of currently valid International Standards.

IS0 7185 : 1990, lnformaiion technology - Programming
languages - PASCAL.

IS0 8730 : 1990, Banking - Requirements for message
authentication (wholesale).

3 Brief description

3.1 General

The Message Authenticator Algorithm works on the principle of
a Message Authentication Code (or MAC), a number sent with
a message, so that a check can be made by the receiver of the
message that it has not been altered since it left the sender.

3.2 Technical

All numbers manipulated in this algorithm shall be regarded
as 32-bit unsigned integers, unless othewise stated. For
such a number IV, 0 < N < 232. This algorithm can be
implemented conveniently and efficiently in a computer with a
word length of 32 bits or more.

Messages to be authenticated may originate as a bit string of
any length. They shall be input to the algorithm as a sequence
of 32 bit numbers, MI, M2 -- M*, of which there are n, called
message blocks. The detail of how to pad out the last block M,,
to 32 bits is not part of the algorithm but shall be defined in any
application. This algorithm shall not be used to authenticate
messages with more than 1 000 000 blocks, i.e. n c 1 000 000.

The key shall comprise two 32 bit numbers J and K and thus
has a size of 64 bits.

The result of the algorithm is a 32 bit authentication value.
The calculation can be performed on messages as short as
one block (n = 1).

Messages longer than 256 message blocks shall be divided
into segments of 256 blocks, except that the last segment
may have less than 256 message blocks.

Clause 4 specifies the segment algorithm. If the whole
message is within one segment this completes the
calculation and its output (Z) is the value of the authenticator.
If there are more than 256 message blocks, the mode of
operation specified in clause 5 shall be used.

The segment algorithm has three parts.

a) The prelude shall be a calculation made with the key
parts (J and K) alone and it shall generate six numbers X0,
Yo, VO, W, S and T which shall be used in the subsequent
calculations. This part need not be repeated until a new
key is installed.

b) The main loop is a calculation which shall be repeated
for each message block M, and therefore, for long
messages, dominates the calculation.

c) The coda shall consist of two operations of the main
loop, using as its message blocks the two numbers S and
T in turn, followed by a simple calculation of Z.

The mode of operation (see clause 5) is an essential feature
of the implementation of this algorithm.

Figure 1 shows the data flow in schematic form.

4 The segment algorithm

4.1 Definition of the functions used in the
algorithm

4.1 .I General definitions

A number of functions are used in the description of the
algorithm. In the following, X and Y are 32 bit numbers and
the result is a 32 bit number except where stated otherwise.

1

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

CYC(X) is the result of a one-bit cyclic left shift of X.

AND(X,Y) is the result of the logical AND operation carried
out on each of 32 bits.

OR(KY) is the result of the logical OR operation carried
out on each of 32 bits.

XOR(X,Y) is the result of the XOR operation (modulo 2
addition) carried out on each of 32 bits.

ADD(X,Y) is the result of adding X and Y discarding any
carry from the 32nd bit, that is to say, addition
modulo 232.

CAR(X,Y) is the value of the carry from the 32nd bit when
X is added to Y; it has the value of 0 or 1.

MULl (X,Y), MUL2(X,Y) and MUL2A(X,Y)
are three different forms of multiplication, each
with a 32 bit result.

Pwl is the result of concatenating the binary numbers
X and Y, in the left of most significant position.
The notation is extended to concatenate more
than two numbers and is applied also to 8 bit
bytes and numbers longer than 32 bits.

4.1.2 Definition of multiplication functions

To explain the multiplications, let the 64 bit product of X and
Y be [lJ]]L]. Hence U is the upper (most significant) half of the
product and L the lower (least significant) half.

4.1.2-l To calculate MULI (X,Y)

Multiply X and Y to produce [lJ]]L] with S and C as local
variables,

S := ADD(U,L); . . . (1)

C := CAR(U,L); . . . (2)

MULl (X,Y) : = ADD(S,C). . . . (3)

That is to say, U shall be added to L with end around carry.

Numerically the result is congruent to X*Y, the product of X
and Y, modulo (232 - 1). It is not necessarily the smallest
residue because it may equal 232 - 1.

4.1.2.2 To calculate MUL2(X,Y)

This form of multiplication shall not be used in the main loop,
only in the prelude. With D, E, F, S and C as local variables,

D := ADD(U,U); . . . (4)

E := CAR(U,U); . . . (5)

F := ADD(D,2E); . . . (6)

S := ADD(F,L); . . . (7)

C := CAR(F,L); . . . (8)

MUL2(X,Y) := ADD(S,2C). . . . (9)

Numerically the result is congruent to X*Y, the product of X
and Y, modulo (232 - 2). It is not necessarily the smallest
residue because it may equal 232 - 1 or 232 - 2.

4.1.2.3 To calculate MUL2A(X,Y)

This is a simplified form of MUL2(X,Y) used in the main loop,
which yields the correct result only when at least one of the
numbers X and Y has a zero in its most significant bit.

This form of multiplication is employed for economy in
processing. D, S, C are local variables,

D := ADD(U,U); . . . (10)

S := ADD(D,L); . . . (11)

C := CAR(D,L); . . . (12)

MUL2A(X,Y):= ADD(S,2C). . . . (13)

The result is congruent to X*Y modulo (232 - 2) under the
conditions stated because, in the notation of MUL2(X,Y)
above, the carry E = 0.

4.1.3 Definition of the functions BYT[XI[Y] and
PAWI VI

A procedure is used in the prelude to condition both the key
parts and the results in order to prevent long strings of ones
or zeros. It produces two results which are the conditioned
values of X and Y and a number PAT[X,Y] which records the
changes that have been made. PAT[X,Y] c 255 so it is
essentially an 8 bit number.

X and Y are regarded as strings of bytes.

[xllyl = [Boll Bdi B*11 B311 f3411 B511 Bd1 B71

Thus bytes BO to B3 are derived from X and B4 to B7 from Y.

The procedure is best described by a procedure where each
byte Bi is regarded as an integer of length 8 bits.
begin

P := 0
for i := 0 to 7 do
begin

P := Z’P;
if B[i]= 0 then
begin

P := P + 1;
f’ ._ B II .- P

end
else

if B[i]= 255 then
begin

P:= P+ 1;
B’[i] := 255-P

end
else

B’[i] := B[i];
end

end;

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

NOTE 1 The procedure is written in the programming language
PASCAL (see IS0 7185), except that the non-standard identifier B’
has been used to maintain continuity with the text. The symbols B[i]
and B’[i] correspond to B; and B’; in the text.

The results are

BYT[XllY] = [N/l Bill &II B;ll B’411 &II B’s11 B(7]

and

PAT[XI(Y] = P

4.2 Specification of the algorithm

4.2.1 The prelude

[JI II&] := BYT[JIIK];

P := PA-UJIIK];

Q := (1 d- P)*(l + P). . . . (14

First, by means of a calculation using Jl, produce H4, H6, and
H8 from which X0, VO and S are derived.

J12 := MULl (JI ,JI); J22 := MUL2(Jl ,JI);

J14 := MULl (J12,Jl~); J24 := MUL2(J22,J22)

JIG := MULl (J 12,Jld); J26 := MUL2(J22,J24)

JIB := MULI (Jlz,Jl~); J28 := MULZ?(J&,J&)

H4 := XOR(J 14,J24);

H6 := xoR(J l&S);

H8 := xoR(J 18,J28).

From a similar calculation using Kl, produce Hg, H7 and Hg,
from which Yo, W and T are derived. .

K12 := MULI (Kj ,KI); K22 := MUL2(Kl ,KI);

K14 := MULI (K12,K12); K24 := MUL2(K22,K22);

Kls := MULI (KY ,K14); K25 := MUL2(K1 ,K24);

K17 := MULI (K12,Kls); K27 := MUL2(K22,K2s);

Klg := MULI (K12,KlT); K2g := MUL2(K22,K27).

H’ := XOR(Kls,K25);

Hg := MUL2(H’,Q);

H7 := XOR(K17,K27);

Hg := XOR(KI g,K2g).

Finally, condition the results using the BYT function

[Xol IYo] := BYT[H41 It-k];
[VOIIW] := BYT[Hsl It-b];
[SIlTI := BYT[bl It-b]-

. . . (17)

419)

(20)

4.2.2 The main loop

This loop shall be performed in turn for each of the message
blocks Mi. In addition to Mi, the principal values employed shall
be X and Y and the main results shall be the new values of X
and Y. tt shall also use V and W and modify V at each
performance. X, Y and V shall be initialized with the values
provided by the prelude. In order to use the same keys again,
the initial values of X, Y and V shall be preserved, therefore
they shall be denoted X0, YO and VO and there shall be an
initializing step X := &, Y := Yo, V := VO, after which the main
loop shall be entered for the first time.

NOTE 2 The program is shown in columns to clarify its parallel operation
but it should be read in normal reading order, left to right on each line.

v := CYC(V);

E := XOR(V,W); . . . (21)

X := XOR(X,Mj); Y := XOR(Y,Mi); . . . (22)
F := ADD(E,Y); G := ADD(E,X);

F := OR(F,A); G := OR(G,B);

F := AND(F,C); G := AND(G,D); . . . (23)

X := MULl (X,F); Y := MUL2A(Y,G). . ..(24)

The numbers A, B, C, D are constants which are, in
hexadecimal notation:

Constant A: 0204 0801
Constant B: 0080 4021
Constant C: BFEF 7FDF
Constant D: 7DFE FBFF

NOTE 3 Lines (21) are common to both paths. Line (22) introduces
the message block Mi. Lines (23) prepare the multipliers and line (24)
generates new X and Y values. Only X, Y and V are modified for use
in the next cycle. F and G are local variables. Since the constant D
has its most significant digit zero, G < Z3’ and this ensures that
MUL2A in line (24) will give the correct result.

4.2.3 The coda

The coda shall be performed after the last message block of
the segment has been processed, by applying the main loop to
message block S, then again to message block T. Then the
result Z = XOR(X,Y) shall be calculated. This completes the
coda. If the message contains no more than 256 message
blocks, Z is the value of the MAC. Otherwise the value of Z
shall be used in the mode of operation specified in clause 5.

NOTE 4 In order to calculate further Z values without repeating the
prelude (key calculation) until the key is changed the values X0, Yo.
VO, W, S and T should be retained.

5 Specification of the mode of operation

Messages longer than 256 message blocks shall be divided
into segments SEGI,SEG~...SEG~ each of 256 blocks except
that the last segment may have from 1 to 256 blocks. The
number of segments is s.

The result Z of the segment algorithm specified in clause 4,
when applied to key J,K and a message M shall be denoted
Z(J,W).

3

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

The mode of operation for calculating the MAC for a
message of more than 256 blocks shall employ the above
algorithm once for each segment. The algorithm specified in
clause 4 shall be applied to the first segment to produce:

21 = Z(J,K,SEG1).

Z1 shall be concatenated with the second segment to
produce [ZlllSEG2], to which the algorithm shall be applied:

Z2 = Z(J, K,[& 1 ISEGz]).

Note that Z1 is treated as a message block which is prefixed .
to SEG2 to form a segment of up to 257 blocks.

Keyparts

If there are no more segments, Z2 shall be the resultant MAC
for the whole message, otherwise the procedure shall
continue, and for the ith segment:

Zi = Z(J,K, [Zi-1] (SEGi]).

There are in total s segments; then Zs shall be the resultant
MAC for the whole message.

NOTE 5 The prelude need be performed only once and its results (line
20) may be retained for use on each Z calculation. The main loop is
performed once for each message block, including the prefixed Zi blocks.
The coda is performed at the end of each segment, since it is part of the
segment algorithm specified in clause 4.

J K

4 i
Prelude i p;,;“sE + +:

Storage for
future use

Initialization

Main loop

Contains :

MUL 1
MUL2A

Coda

X0 Y. V. W S T

xv YI VT
‘W

Main loop

Ml

Main loop -’ I

I

I
I

Segment

i-l
Ml

I I

I I
I I

4-J M m

Figure 1 - Schematic showing data flow for the segment algorithm
applied to a segment of m message blocks

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

Annex A
(informative)

Test examples for implementation of the algorithm
A.1 General

For most parts of the algorithm, simple test examples are given. The data used are not always realistic, i.e. they are not values
which could be produced by earlier parts of the algorithm, and artificial values of constants are used. This is done to keep the test
cases so simple that they can be verified by a pencil and paper calculation and thus the verification of the algorithm’s
implementations does not consist of comparing one machine implementation with another. The parts thus tested are:

- MULI, MUL2, MUL2A;

- BYT[X,Y] and PAT[X,Y];

- Prelude, except the initial BYT[J,K] operation;

- Main loop.

The coda is not tested separately because it uses only the main loop and one XOR function. For testing the whole algorithm,
some results from a trial implementation are given.

A.2 Test examples for MULl, MUL2, MUL2A

It is suggested that the multiplication operations should be tested with very small numbers and very large numbers. To represent
a large number these examples use the ones complement. Thus if a is a small number (say less than 4 096) the notation Z is
used to mean its complement, i.e. 232 - 1 - a.

For small numbers a and b, all three multiplication functions produce their true product a*b. When large numbers are used the
functions can give different results. They should be tested both ways round, with MUL(x,y) and MUL(y,x) to verify that these are
equal.

A.2.1 Test cases for MULl

In modulo (232 - 1) arithmetic Z is effectively - a, therefore the results are very simple a.

MULI @i,b) = MULI (a$) = a*b

MULI (Z,b) = a*b

Examples for testing are given in table 1.

A.2.2 Test cases for MUL2

MUL2@b)= a*b- b+ 1

MUL2(a,b) = a*b- a+ 1

MUL26,b) = a*b- a- b+ 1

Examples for testing are given in table 1.

A.2.3 Test cases for MUL2A

This will give the same result as MUL2 when tested with numbers within its range. For testing with large numbers, Z and 6 - 231
shall be used

MUL2A(a,b) = a*b- b+ 1

MUL2A(a,b) = a*b- a+ 1

MUL2A(Z,;6 - 231) = 231 * (1 - p) + a*b + p - b - 1

where p is the parity of a, the value of its least significant bit.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

That is, for even values of a the result is 231 + a*b - b - 1 and for odd values of a the result is a*b - b.

Examples for testing are given in table A.I.

Table A.1 - Test cases for multiplication functions (hexadecimal)

I Function

MULl

MUL2

MUL2A

a

0000 OOOF

FFFF FFFO

FFFF FFFO

0000 OOOF

FFFF FFFO

FFFF FFFO

0000 OOOF

FFFF FFFO

7FFF FFFO

FFFF FFFO

b

0000 OOOE

0000 OOOE

FFFF FFFl

0000 OOOE

0000 OOOE

FFFF FFFl

0000 OOOE

0000 OOOE

FFFF FFFl

7FFF FFFl

Result I
0000 OOD2

FFFF FF2D

0000 0002

0000 OOD2

FFFF FF3A

0000 OOB6

0000 OOD2

FFFF FF3A

8000 OOC2

0000 ooc4

A.3 Test examples for BYT and PAT

Three cases for testing these functions are listed in table A.2.

Table A.2 - Test cases for the BYT and PAT functions

Function X v

[Xl VI 00 00 00 00 00 00 00 00

BY-VI VI 01 0307OF lF3F7FFF

PAT[XI IYj FF

[Xl VI FF FF 00 FF FF FF FF FF

BY-ro(I Yl FE FC 07 FO EO CO 80 00

PAT[XI Iv] FF

[Xl Iv) AB 00 FF CD FF EF 00 01

BY-WI VI ABOl FCCD F2 EF 35 01

PAW VI 6A

6

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

IS0 8731-2 : 1992 (E)

A.4 Test examples for the prelude

An example is given in table A.3. The initial BYT[JIIK] operation is not tested. It is assumed that the results from lines (14) are

Jj = 00000100, K1=OOOO 0080, P= 1.

Table A.3 - Test cases for lines (15) to (20) of the prelude

J12 00010000 J22 00010000

J14 0000 0001 J24 0000 0002
Jls 00010000 a6 0002 0000
J18 0000 0001 a8 0000 0004

H4 0000 0003
H6 0003 0000
HR 0000 0005

Kl2 0000 4000 K22 0000 4000
Kl4 1000 0000 K24 1000 0000

KI5 ~0000 0008 K25 0000 0010
Kl7 0002 0000 K27 0004 0000
Kh 8000 0000 K29 0000 0002

H’ 0000 0018
H5 0000 0060 (Q = 4)
H7 0006 0000

Hg 8000 0002

wwd 0103 0703 1 D3B 7760 PAT[XollYo) EE(ll10 1110)

IVdlwl 0103 0508 1706 SDBB PAT[Vol WI BB (1011 1011)

, Fw-l 0 103 0705 8039 7302 f+wwl E6(11100110)

The PAT values obtained from conditioning the results of the prelude are quoted above for checking purposes but are not used in the
algorithm.

A.5 Test examples for the main loop

In table A.4, three examples of single block messages are given, using small and large numbers with the convention that 2 is y2 - 1 -
a. In the third example there are two cases of large numbers which must have zero in the 32nd bit, shown as 2 - 231 and 3 - 231
respectively. They could have been written 23’ - 3 and 23’ - 4 respectively. In order to keep the numbers small, artificial values of the
constants A, B, C and D are used. Three single block examples are followed by a message of three blocks, in order to check that the
implementation correctly retains the value of X, Y and W. The final S and T cycles of the coda are not included in this table.

Table A.4 - Test cases for the main loop (decimal)

A B

C D

V w

x0 Yo
M

V

E

X Y

F G

F G

F G

X Y

Z

Single block messages

4 1 1 4 1 2

8 ;4 F 3 7 2*

3 3 3 3 7 7

2 3 2 3 2 3

5 1 8

6 6 14

5 5 9

7 6 3 2 -7-u 7-T

11 12 2 1 2 7

15 13 3 5 2 7

7 9 1 4 3 3*

49 54 3 5 30 30

7 6 0

T
2 1

4 T

1 1

1 2

0

2

3

1 2

5 4

7 5

3 1

3 2

Three-block message

2 1 2 1

ZT ? -4 -4

2 1 4 1

3 2 20 9

1 2

4 8

5 9

2 3 22 11

CYC ;

XOR

XOR

ADD

OR

AND

MUL

XOR

7

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO 8731-2:1992
https://standards.iteh.ai/catalog/standards/sist/b25f6a15-b5c9-4d63-96f0-

61d18e8f639e/iso-8731-2-1992

	'ÔÀu�Ooà—šœmÿç¢ã5PXÇœÔ¨½õýõ�3|o¨‘Øi—��®™Žø™4p�‚NÖ�aýFh·t�xà”h~±Ç
oç-

