SLOVENSKI STANDARD ### SIST-TP CLC/TR 60919-1:2007 januar 2007 Lastnosti visokonapetostnih enosmernih sistemov z vodovno komutiranimi pretvorniki - 1. del: Pogoji v ustaljenem stanju (IEC/TR 60919-1:2005) (istoveten CLC/TR 60919-1:2005) Performance of high-voltage direct current (HVDC) systems with line-commutated converters - Part 1: Steady-state conditions (IEC/TR 60919-1:2005) # iTeh STANDARD PREVIEW (standards.iteh.ai) # iTeh STANDARD PREVIEW (standards.iteh.ai) ### **TECHNICAL REPORT** ### CLC/TR 60919-1 RAPPORT TECHNIQUE ### TECHNISCHER BERICHT December 2005 ICS 29.200; 29.240.99 English version # Performance of high-voltage direct current (HVDC) systems with line-commutated converters Part 1: Steady-state conditions (IEC/TR 60919-1:2005) Fonctionnement des systèmes à courant continu haute tension (CCHT) à convertisseurs commutés par le réseau gleichstrom (HGÜ Partie 1: Spécification des conditions de fonctionnement en régime établi (CEI/TR 60919-1:2005) Teh STANDARD Betriebsverhalten Stromrichter in Ho gleichstrom (HGÜ Teil 1: Bedingunge Zustand (IEC 62102:2001) Betriebsverhalten netzgeführter Stromrichter in Hochspannungsgleichstrom (HGÜ)-Systemen Teil 1: Bedingungen im eingeschwungenen Zustand (IEC 62102:2001) (standards.iteh.ai) SIST-TP CLC/TR 60919-1:2007 https://standards.iteh.ai/catalog/standards/sist/9e55f514-ce70-4ef6-b4bc-b2045ae40a88/sist-tp-clc-tr-60919-1-2007 This Technical Report was approved by CENELEC on 2005-07-09. CENELEC members are the national electrotechnical committees of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom. ## **CENELEC** European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung Central Secretariat: rue de Stassart 35, B - 1050 Brussels ### **Foreword** The text of the Technical Report IEC/TR 60919-1, prepared by SC 22F, Power electronics for electrical transmission and distribution systems, of IEC TC 22, Power electronic systems and equipment, was submitted to the formal vote and was approved by CENELEC as CLC/TR 60919-1 on 2005-07-09 without any modification. Annex ZA has been added by CENELEC. ### **Endorsement notice** The text of the Technical Report IEC/TR 60919-1:2005 was approved by CENELEC as a Technical Report without any modification. iTeh STANDARD PREVIEW (standards.iteh.ai) ## Annex ZA (normative) ## Normative references to international publications with their corresponding European publications The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE Where an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |---------------------------|--------------|--|----------------------|--------------| | IEC 60146-1-1
+ A1 | 1991
1996 | Semiconductor convertors - General requirements and line commutated convertors Part 1-1: Specifications of basic requirements | EN 60146-1-1
+ A1 | 1993
1997 | | IEC 60146-1-2 | 1991 | Part 1-2: Application guide | - | - | | IEC 60146-1-3 | 1991 | Part 1-3: Transformers and reactors | EN 60146-1-3 | 1993 | | IEC 60633 | 1998 | Terminology for high-voltage direct current (HVDC) transmission | EN 60633 | 1999 | | IEC 61803 | 1999 | Determination of power losses in high-
voltage direct current (HVDC) converter
stations | EN 61803 | 1999 | | CISPR 16 | series | SIST-TP CLC/TR 60919-1:2007
"Specification for radio disturbance and 0-4cf
immunity measuring apparatus and 007
methods | 5.EN 55016 | series | | ISO 1996-1 | 2003 | Acoustics – Description, measurement and assessment of environmental noise Part 1: Basic quantities and assessment procedures | - | - | | CIGRE
Brochure No. 139 | | Guide to the specification and design evaluation of AC filters for HVDC systems | - | - | | CIGRE
Report 14-97 | | Protocol for reporting the operational performance of HVDC transmission systems | - | - | # iTeh STANDARD PREVIEW (standards.iteh.ai) # TECHNICAL REPORT ## IEC TR 60919-1 Second edition 2005-03 ## Performance of high-voltage direct current (HVDC) systems with line-commutated converters – ### Part 1: Steady-state conditions # iTeh STANDARD PREVIEW (standards.iteh.ai) <u>SIST-TP CLC/TR 60919-1:2007</u> https://standards.iteh.ai/catalog/standards/sist/9e55f514-ce70-4ef6-b4bc-b2045ae40a88/sist-tp-clc-tr-60919-1-2007 © IEC 2005 — Copyright - all rights reserved No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch PRICE CODE Commission Electrotechnique Internationale ### CONTENTS | FO | REW(| ORD | 6 | |----|-------|--|----| | 1 | Scop | oe | 8 | | 2 | Norm | native references | 10 | | 3 | Type | s of HVDC systems | 10 | | | 3.1 | General | | | | 3.2 | HVDC back-to-back system | | | | 3.3 | Monopolar earth return HVDC system | | | | 3.4 | Monopolar metallic return HVDC system | | | | 3.5 | Bipolar earth return HVDC system | | | | 3.6 | Bipolar metallic return HVDC system | | | | 3.7 | Two 12-pulse groups per pole | | | | 3.8 | Converter transformer arrangements | | | | 3.9 | DC switching considerations | | | | 3.10 | Series capacitor compensated HVDC systems | 25 | | 4 | Envii | ronment information STANDARD PREVIEW | 27 | | 5 | Rate | d power, current and voltage Rated power (standards.iteh.ai) | 31 | | | 5.1 | Rated power (standards.iteh.ai) | 31 | | | 5.2 | Rated current | 31 | | | 5.3 | Rated voltage SIST-TP CLC/TR 60919-1:2007 | 32 | | 6 | Over | Rated voltage SIST-TP CLC/TR 60919-1:2007 Introst//standards.iteh.ai/catalog/standards/sist/9e55f514-ce70-4ef6-b4bc-load and equipment capability 62045ae40a88/sist-tp-ck-tr-60919-1-2007 | 32 | | | 6.1 | 62045ae40a88/sist-tp-cic-tr-60919-1-2007
Overload | 32 | | | 6.2 | Equipment capability | | | 7 | - | num power transfer and no-load stand-by state | | | | 7.1 | General | | | | 7.2 | Minimum current | | | | 7.3 | Reduced direct voltage operation | | | | 7.4 | No-load stand-by state | | | 8 | | ystem | | | | | General | | | | 8.2 | AC voltage | | | | 8.3 | Frequency | | | | 8.4 | System impedance at fundamental frequency | | | | 8.5 | System impedance at harmonic frequencies | | | | 8.6 | Positive and zero-sequence surge impedance | | | | 8.7 | Other sources of harmonics | | | | 8.8 | Subsynchronous torsional interaction (SSTI) | | | 9 | | ctive power | | | - | 9.1 | General | | | | 9.2 | Conventional HVDC systems | | | | 9.3 | Series capacitor compensated HVDC schemes | | | | 9.4 | Converter reactive power consumption | | | | 9.5 | Reactive power balance with the a.c. system | | |----|-------|---|-----| | | 9.6 | Reactive power supply | .42 | | | 9.7 | Maximum size of switchable VAR banks | .42 | | 10 | HVD | C transmission line, earth electrode line and earth electrode | .42 | | | 10.1 | General | .42 | | | 10.2 | Overhead line(s) | .43 | | | 10.3 | Cable line(s) | .43 | | | 10.4 | Earth electrode line | .44 | | | 10.5 | Earth electrode | .44 | | 11 | Relia | bility | .44 | | | 11.1 | General | .44 | | | 11.2 | Outage | .44 | | | 11.3 | Capacity | .45 | | | 11.4 | Outage duration terms | .45 | | | 11.5 | Energy unavailability (EU) | .46 | | | 11.6 | Energy availability (EA) | .47 | | | 11.7 | Maximum permitted number of forced outages | .47 | | | 11.8 | Statistical probability of outages | .47 | | 12 | HVD | C control | .48 | | | 12.1 | Control objectives | .48 | | | | Control objectives. Control structure STANDARD PREVIEW | | | | 12.3 | Control order settings (standards.iteh.ai) Current limits | .54 | | | 12.4 | Current limits | .54 | | | | Control circuit redundangyst. TP. CLC/TR. 60919-1:2007 | | | | | Measurements tandards.iteh.ai/catalog/standards/sist/9e55f514-ce70-4ef6-b4bc- | | | 13 | | communicationb2045ae40a88/sist-tp-clc-tr-60919-1-2007 | | | | 13.1 | Types of telecommunication links | .55 | | | 13.2 | Telephone | .56 | | | 13.3 | Power line carrier (PLC) | .56 | | | 13.4 | Microwave | .56 | | | 13.5 | Radio link | .57 | | | 13.6 | Optical fibre telecommunication | .57 | | | 13.7 | Classification of data to be transmitted | .57 | | | 13.8 | Fast response telecommunication | .58 | | | | Reliability | | | 14 | Auxil | iary power supplies | .58 | | | 14.1 | General | .58 | | | 14.2 | Reliability and load classification | .59 | | | 14.3 | AC auxiliary supplies | .60 | | | 14.4 | Batteries and uninterruptible power supplies (UPS) | .60 | | | 14.5 | Emergency supply | .61 | | 15 | Audib | ple noise | .61 | | | 15.1 | General | .61 | | | 15.2 | Public nuisance | .61 | | | 15.3 | Noise in working areas | .62 | | 16 | Harmonic interference – AC | 63 | |-----|--|----| | | 16.1 AC side harmonic generation | 63 | | | 16.2 Filters | 63 | | | 16.3 Interference disturbance criteria | 67 | | | 16.4 Levels for interference | 68 | | | 16.5 Filter performance | | | 17 | Harmonic interference – DC | | | | 17.1 DC side interference | 69 | | | 17.2 DC filter performance | | | | 17.3 Specification requirements | | | 18 | Power line carrier interference (PLC) | | | | 18.1 General | | | | 18.2 Performance specification | | | 19 | Radio interference | | | | 19.1 Radio interference (RI) from HVDC systems | | | | 19.2 RI performance specification | | | 20 | Power losses | | | | 20.1 General | | | - 1 | 20.2 Main contributing sources | | | 21 | Provision for extensions to the HVDC systems | 80 | | | 21.1 General21.2 Specification for extensions ndards.iteh.ai) | 80 | | | 21.2 Specification for extensions that us the state of th | 80 | | Rih | SIST-TP CLC/TR 60919-1:2007 | 83 | | טוט | liography | 03 | | | b2045ae40a88/sist-tp-clc-tr-60919-1-2007 | | | Fig | ure 1 – Twelve-pulse converter unit | 8 | | Fig | ure 2 – Examples of back-to-back HVDC systems | 11 | | Fig | ure 3 – Monopolar earth return system | 12 | | Fig | ure 4 – Two 12-pulse units in series | 13 | | | ure 5 – Two 12-pulse units in parallel | | | _ | ure 6 – Monopolar metallic return system | | | _ | ure 7 – Bipolar system | | | _ | ure 8 – Metallic return operation of the unfaulted pole in a bipolar system | | | _ | ure 9 – Bipolar metallic neutral system | | | _ | · | | | | ure 10 – DC switching of line conductors | | | _ | ure 11 – DC switching of converter poles | | | _ | ure 12 – DC switching – Overhead line to cable | | | _ | ure 13 – DC switching – Two-bipolar converters and lines | | | Fig | ure 14 – DC switching – Intermediate | 25 | | Fig | ure 15 – Capacitor commutated converter configurations | 26 | | Figure 16 – Variations of reactive power \mathcal{Q} with active power \mathcal{P} of an HVDC converter | 40 | |--|----| | Figure 17 – Control hierarchy | 49 | | Figure 18 – Converter voltage-current characteristic | 52 | | Figure 19 – Examples of a.c. filter connections for a bipole HVDC system | 64 | | Figure 20 – Circuit diagrams for different filter types | 66 | | Figure 21 – RY COM noise meter results averaged – Typical plot of converter noise levels on the d.c. line corrected and normalized to 3 kHz bandwidth –0 dBm = 0,775 V | 76 | | Figure 22 – Extension methods for HVDC systems | 81 | | Table 1 – Information supplied for HVDC substation | 28 | | Table 2 – Performance parameters for voice communication circuits: Subscribers and trunk circuits | 72 | # iTeh STANDARD PREVIEW (standards.iteh.ai) ### INTERNATIONAL ELECTROTECHNICAL COMMISSION _____ ## PERFORMANCE OF HIGH-VOLTAGE DIRECT CURRENT (HVDC) SYSTEMS WITH LINE-COMMUTATED CONVERTERS – ### Part 1: Steady-state conditions #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. b2045ae40a88/sist-tp-clc-tr-60919-1-2007 - 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art". IEC 60919-1, which is a technical report, has been prepared by subcommittee 22F: Power electronics for electrical transmission and distribution systems, of IEC technical committee 22: Power electronic systems and equipment. This second edition cancels and replaces the first edition, published in 1988, and constitutes a technical revision. This edition includes the following main changes with respect to the previous edition: - a) this report concerns only line-commutated converters; - b) significant changes have been made to the control system technology; - c) some environmental constraints, for example audible noise limits, have been added; - d) the capacitor coupled converters (CCC) and controlled series capacitor converters (CSCC) have been included. The text of this technical report is based on the following documents: | Enquiry Draft | Report on voting | |---------------|------------------| | 22F/95A/DTR | 22F/104/RVC | Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. IEC 60919 consists of the following parts, under the general title: *Performance of high-voltage direct current (HVDC) systems with line-commutated converters:* Part 1: Steady-state conditions Part 2: Faults and switching Part 3: Dynamic conditions ### iTeh STANDARD PREVIEW The committee has decided that the contents of this publication will remain unchanged until the maintenance result date¹ indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be reconfirmed: SIST-TP CLC/TR 60919-1:2007 https://standards.iteh.ai/catalog/standards/sist/9e55f514-ce70-4ef6-b4bc- • withdrawn; b2045ae40a88/sist-tp-clc-tr-60919-1-2007 - · replaced by a revised edition, or - · amended. A bilingual version of this technical report may be issued at a later date. ¹ The National Committees are requested to note that for this publication the maintenance result date is 2010. ## PERFORMANCE OF HIGH-VOLTAGE DIRECT CURRENT (HVDC) SYSTEMS WITH LINE-COMMUTATED CONVERTERS – ### Part 1: Steady-state conditions ### 1 Scope This technical report provides general guidance on the steady-state performance requirements of HVDC systems. It concerns the steady-state performance of two-terminal HVDC systems utilizing 12-pulse converter units comprised of three-phase bridge (double-way) connections (see Figure 1), but it does not cover multi-terminal HVDC transmission systems. Both terminals are assumed to use thyristor valves as the main semiconductor valves and to have power flow capability in both directions. Diode valves are not considered in this report. ### Key 1 Transformer valve windings Figure 1 - Twelve-pulse converter unit Only line-commutated converters are covered in this report, which includes capacitor commutated converter circuit configurations. General requirements for semiconductor line-commutated converters are given in IEC 60146-1-1, IEC 60146-1-2 and IEC 60146-1-3. Voltage-sourced converters are not considered. This technical report, which covers steady-state performance, will be followed by additional documents on dynamic performance and transient performance. All three aspects should be considered when preparing two-terminal HVDC system specifications. The difference between system performance specifications and equipment design specifications for individual components of a system should be realized. Equipment specifications and testing requirements are not defined in this report. Also excluded from this report are detailed seismic performance requirements. In addition, because there are many variations between different possible HVDC systems, this report does not consider these in detail; consequently, it should not be used directly as a specification for a particular project, but rather to provide the basis for an appropriate specification tailored to fit actual system requirements. Frequently, performance specifications are prepared as a single package for the two HVDC substations in a particular system. Alternatively, some parts of the HVDC system can be separately specified and purchased. In such cases, due consideration should be given to coordination of each part with the overall HVDC system performance objectives and the interface of each with the system should be clearly defined. Typical of such parts, listed in the appropriate order of relative ease for separate treatment and interface definition, are: - a) d.c. line, electrode line and earth electrode; - b) telecommunication system; - c) converter building, foundations and other civil engineering work; - d) reactive power supply including a.c. shunt capacitor banks, shunt reactors, synchronous and static VAR compensators; - e) a.c. switchgear; - f) d.c. switchgear; - g) auxiliary systems; - h) a.c. filters; - i) d.c. filters; - j) d.c. reactors; iTeh STANDARD PREVIEW - k) converter transformers; (standards.iteh.ai) - surge arresters; - m) series commutation capacitors <u>SIST-TP CLC/TR 60919-1:2007</u> - n) valves and their ancillaries; s.iteh.ai/catalog/standards/sist/9e55f514-ce70-4ef6-b4bc- - o) control and protection systems. NOTE The last four items are the most difficult to separate, and, in fact, separation of these four may be inadvisable. A complete steady-state performance specification for a HVDC system should consider Clauses 3 to 21 of this report. Terms and definitions for high-voltage direct current (HVDC) transmission used in this report are given in IEC 60633. Since the equipment items are usually separately specified and purchased, the HVDC transmission line, earth electrode line and earth electrode (see Clause 10) are included only because of their influence on the HVDC system performance. For the purpose of this report, an HVDC substation is assumed to consist of one or more converter units installed in a single location together with buildings, reactors, filters, reactive power supply, control, monitoring, protective, measuring and auxiliary equipment. While there is no discussion of a.c. switching substations in this report, a.c. filters and reactive power sources are included, although they may be connected to an a.c. bus separate from the HVDC substation, as discussed in Clause 16.