INTERNATIONAL

High-density polyethylene (PE-HD) pipes and fittings for buried drainage and sewerage systems - Specifications

iTeh STANDARD PREVIEW

(Tübes et faccoras lénobolyéthyl ène haute densité (PE-HD) pour les systèmes d'assainissement enterrés et les égouts souterrains Spécifications

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 8772 was prepáred by Technicall Committee i) ISO/TC 138, Plastics pipes, fittings and valves for the fransport of fluids.

Annexes A, B, C, D, E and F form an integral part of this $\operatorname{International}$ Standard.

[^0]
High-density polyethylene (PE-HD) pipes and fittings for buried drainage and sewerage systems - Specifications

1 Scope

This International Standard specifies requirements for high-density polyethylene (PE-HD) pipes, fittings and joints with nominal outside diameters from 110 mm to 2000 mm and for fittings with elastomeric sealing rings of nominal outside diameter from 110 mm to 400 mm , serving as buried gravity drain and sewer pipes for the transportation of soil and waste discharge of domestic origin.

ISO 1167:-1), Thermoplastics pipes for the transport of fluids - Resistance to internal pressure - Test method and basic specification.

ISO 2506:1981, Polyethylene pipes (PE) - Longitudinal reversion - Test methods and specification.

ISO 3126:1974, Plastics pipes - Measurement of dimensions WIEW
ISO 3607:1977, Polyethylene (PE) pipes - Tolerances on Outside diameters and wall thicknesses.

ISO 3663:1976, Polyethylene (PE) pressure pipes and fittipgs, metric series. - Dimensions of flanges.

It may also be applied to pipes, fittings and joints for
discharges of industrial origin, provided chemical and temperature resistance is taken into account.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 265-1:1988, Pipes and fittings of plastics materials - Fittings for domestic and industrial waste pipes - Basic dimensions: Metric series - Part 1: Unplasticized poly(vinyl chloride) (PVC-U).

ISO 1043-1:1987, Plastics - Symbols - Part 1: Basic polymers and their special characteristics.

ISO 1133:1991, Plastics - Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics.

3 Symbols

The symbols used in this International Standard are given in table 1.

Table 1 - Symbols

Symbol	Meaning
D	Nominal outside diameter of pipe
$D_{\mathrm{e}, \mathrm{m}}$	Mean outside diameter
$d_{\mathrm{s}, \mathrm{m}}$	Socket mean inside diameter
e	Nominal wall thickness
e_{2}	Wall thickness at socket cylindrical part
e_{3}	Wall thickness at socket groove
l_{1}	Spigot length
l	Nominal length of pipe
A	Length of engagement
C	Length of socket mouth

[^1]
4 Material

4.1 The material shall consist of polyethylene (PE) to which may be added only those additives needed to facilitate the manufacture of sound, durable pipes and fittings of good surface finish and mechanical strength.

When sealing rings are retained by means of retaining caps or rings, the retaining caps or rings may be made from polymers other than PE provided that they conform to the same functional dimensions and test requirements as applied to sockets with either loose or fixed sealing rings.
4.2 The use of the manufacturer's own clean rework material is permissible provided that it conforms to the requirements of this International Standard. No other rework material shall be used.

5.1 Pipe dimensions

The pipe dimensions are illustrated in figure 1.

Figure 1 - Dimensions

5.1.1 Outside diameter

The nominal outside diameter D shall be in accordance with table 2.

Tolerances on mean outside diameters $D_{\mathrm{e}, \mathrm{m}}$ shall be in accordance with ISO 3607.
4.3 Carbon black added to ensure resistance to ultraviolet light shall comply with the following redards.ittable 2)- Nominal outside diameter quirements:

- mass content: $2,4 \% \pm 0,6 \%$
- density: $1500 \mathrm{~kg} / \mathrm{m}^{3}$ to $2000 \mathrm{~kg} / \mathrm{m}^{3}$
- average particle size: $0,01 \mu \mathrm{~m}$ to $0,025 \mu \mathrm{~m}$

5 Geometrical characteristics

NOTE 1 The figures are schematic sketches only, to help demonstrate relevant dimensions. They do not necessarily represent manufactured components.

All measurements of dimensions shall be carried out in accordance with ISO 3126

Dimensions in milmetres		
:1991 D		
rds/sist/Sp10 eoId-a iso-87722591 140 160 180 200 225 250 280	ab-4003315 e- 355 400 450 500 560 630 710 800	$\begin{gathered} 900 \\ 1000 \\ 1200 \\ 1400 \\ 1600 \\ 1800 \\ 2000 \end{gathered}$
NOTE - These values have been taken from ISO 161-1:1978, Thermoplastics pipes for the transport of fluids - Nominal outside diameters and nominal pressures - Part 1: Metric series		

5.1.2 Wall thickness

The nominal wall thickness e shall be in accordance with table 3.

Tolerances on wall thickness shall be in accordance with ISO 3607.

Table 3 - Nominal wall thickness
Dimensions in millimetres

Nominal outside diameterD	S16	Pipe series S12,5	S8
	Nominal wall thickness e		
110	3,4	4,2	6,6
125	3,9	4,8	7,4
140	4,3	5,4	8,3
160	4,9	6,2	9,5
180	5,5	6,9	10,7
200	6,2	7,7	11,9
225	6,9	8,6	13,4
250	7,7	9,6	14,8
280	8,6	10.7	16,6
315	9,7	12,1	18,7
355	10,9	13,6	21,1
400	12,3	¢ 15,3 ¢	(23,7 ${ }^{\text {a }}$
450	13,8	-17,2	- 26,7
500	15,3	19,1	-の29,6の1
560	17,2	21,4 (S	- 33,2
630	19,3	24,1	37,3
710	21,8	27,2	42,15087
800	24,5	30,6	47,4
900	27,6	./ stal 34,4	ai/cat 53,3 stand
1000	30,6	38,2	9f7a59,3) 75 d
1200	36.7	45,9	
1400	42,9	53,5	
1600	49	61,2	
1800	55,1		
2000	61,2		
NOTE - These values are in accordance with ISO 4065:1978, Thermoplastic pipes - Universal wall thickness table.			

5.1.3 Length

The nominal length l of a pipe shall be measured as shown in figure 2.

The nominal pipe length shall be agreed between the interested parties.

The tolerance on the agreed pipe length shall be $\pm[(0,1 \%$ of $l)+10 \mathrm{~mm}]$, measured at a temperature of $23^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$.

5.2 Dimensions of fittings

5.2.1 Basic dimensions

Basic dimensions of fittings shall be in accordance with ISO 265-1.

The angles of branches shall be $45^{\circ}, 60^{\circ},\left(67,5^{\circ}\right)$ or 90°, where the value given in parentheses is nonpreferred.

5.2.2 Wall thickness

The nominal wall thickness of the body of a fitting shall comply with the values given in table 3. The stiffness of the body of the fitting shall be not less than the stiffness of the corresponding pipe.

5.3 Socket and spigot dimensions of pipes and fittings \mathbb{L} W

5.3.1. BBasic dimensions

A socket and spigot joint fitted with a sealing component complying with this International Standard shalf accommodate the thermal movement due to femperature variations in waste water of a pipe of nominal length l without losing its tightness. The basic dimensions shall be in accordance with table 4 (see also figure 3).

The basic dimensions of sockets and spigots of pipes and fittings shall be calculated as follows:

$$
\begin{aligned}
& A_{\min }=0,2 D+18 \mathrm{~mm} \\
& C_{\max }=0,2 D+18 \mathrm{~mm} \\
& l_{1 . \min }=0,4 D+18 \mathrm{~mm}
\end{aligned}
$$

Where sealing rings are firmly fixed and have multiple sealing zones, the dimensions $A_{\text {min }}$ and $C_{\text {max }}$ (see figure 4) shall be measured to the effective sealing point as specified by the manufacturer. $C_{\text {max }}$ shall be checked with a gauge, as this dimension determines the tightness of the joint.

iTeh STANDARD PREVIEW
Figure 2 - Nominal pipe length and definitions (standarrds.iteh.ail)

ISO 8772:1991
https://standards.iteh.ai/catalog/standards/sist/5b05e01d-a4ab-4003-b51e-
9f7aalc0e75d/iso-8772-1991

Table 4 - Basic dimensions of sockets and spigots

Nominal outside diameter D	Minimum mean inside diameter of the socket $D_{\mathrm{s}, \mathrm{m}, \text { min }}$	Maximum length of the socket mouth $C_{\max }$	Minimum length of engagement $A_{\text {min }}$	Minimum length of the spigot end $l_{1, \text { min }}$
110	111,1	40	40	62
125	126,3	43	43	68
140	141,4	46	46	74
160	161,6	50	50	82
180	181,7	54	54	90
200	201,9	58	58	98
225	227,1	63	63	108
250	252,4	68	68	118
280	282,6	74	74	130
315	318	81	81	144
355	358,3	85	85	160
400	403,7	98	98	178

Figure 3 - Basic dimensions
Figure 4 - Effective sealing point

5.3.2 Wall thickness

The minimum wall thickness of sockets for sealing joints shall meet the requirements of table 5 (see figure 5 for an example).

Table 5 - Minimum wall thickness of sockets on plpe ends and fittings
Dimensions in millimetres

Nominal outside diameter D	Sipe series S12,5 S8					
	$e_{2, \text { min }}$	Minimum wall thickness				$e_{3, ~ m i n}$
110	3,1	2,6	3,8	3,2	6	5
125	3,6	3	4,4	3,6	6,7	5,6
140	3,9	3,3	4,9	4,1	7,5	6,3
160	4,5	3,7	5,6	4,7	8,6	7,2
180	5	4,2	6,3	5,2	9,7	8,1
200	5,6	4,7	7	5,8	11,8	9
225	6,3	5,2	7,8	6,5	12.1	10.1
250	7	5,8	8,7	7,2	13,4	11,1
280	7,8	6,5	9,7	8,1	15	12,5
315	8,8	7,3	10,9	9,1	16,9	14,1
355	9,9	8,2	12,3	10,2	19	15,9
400	11,1	9,3	13,8	11,5	21,4	17,8

iTeh STANDARD PREVIEW

Figure 5 - Socket details

Figure 6 - Example of a seal retaining cap

Where a sealing ring is firmly retained by means of a retaining component (see figure 6 for an example), the wall thickness of the socket in this area and that of the retaining component may be added together to achieve the required e_{3} dimension provided that they are not separated by the sealing ring

In all cases, the components shall meet the functional test requirements specified in clause 8.

Table 6 - Internal pressure test data

Water temperature ${ }^{\circ} \mathrm{C}$	Test time h	Induced stress MPa ${ }^{1}$
80 ± 1	170	3,9

1) $1 \mathrm{MPa}=1 \mathrm{~N} / \mathrm{mm}^{2}$

5.3.3 Inside diameter

iTeh STANDARD PREVIEW

The minimum mean inside diameter d_{s} min of the
cylindrical part of the socket is calculated as foHows.

$$
\left.d_{\mathrm{s}, \mathrm{~m}, \min }=1,009 I\right)+0,1 \mathrm{~mm}
$$

7 Physical test requirements

The values shall be in accordance with qabtelag standards/sist/5b05e01d-a4ab-4003-b51e-
9f7aalcoe75d/iso-8772-1991

NOTE 2 The maximum mean inside diameter $d_{\text {s. } m, ~ m a x ~}$ depends on the sealing ring shape, dimensions and hardness specified by the manufacturer.

6 Mechanical test requirements

The resistance to internal pressure of the pipe and fitting material shall be confirmed by a hydrostatic internal pressure test in accordance with ISO 1167. The test parameters are given in table 6.

Five test pieces (selected at random) of the same nominal outside diameter shall be tested.

The test pieces shall be in pipe form. They are either extruded from the pipe material or, in the case of fittings made of a material different from that of the pipes, injection-moulded to pipe form from the fitting material.

If any of the five test pieces bursts before the specified period of test has elapsed, the test shall be stopped and repeated with a second set of five test pieces taken at random from the batch. In the retest all test pieces shall meet the requirement or the material shall be considered to have failed the test.

7.1 Longitudinal reversion of pipes

The longitudinal reversion of pipes, as determined in accordance with ISO 2506 at a temperature of $110^{\circ} \mathrm{C}$, shall not exceed 3%.

7.2 Oven test for fittings

After testing in accordance with annex A, fittings shall not exhibit excessive blistering, delamination, cracking or signs of weld-line splitting. Weld lines may become pronounced during the test, but this shall not be considered as a failure. Deviations from the original geometric shape shall not be deemed a failure either. In the vicinity of injection points, the depth of penetration of cracks, etc., shall be less than 50% of the local wall thickness.

7.3 Melt flow rate

The melt flow rate of pipes and fittings shall be tested in accordance with ISO 1133. The melt flow rate (MFR) shall be in the range $0,3 \mathrm{~g} / 10 \mathrm{~min} \leqslant$ MFR $(190,5) \leqslant 1 \mathrm{~g} / 10 \mathrm{~min}$.

8 Functional test requirements - Sockets with elastomeric sealing ring

8.1 Internal hydrostatic pressure

When tested using the method described in annex B, at an ambient temperature of $23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$, the joint shall withstand an internal water pressure of $0,05 \mathrm{MPa}(0,5 \mathrm{bar})$ without leakage.

8.2 External hydrostatic or internal negative air pressure

When tested using the method described in annex C, at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, the joint shall withstand either an external water pressure of $0,05 \mathrm{MPa}$ ($0,5 \mathrm{bar}$) or an internal negative air pressure of $0,03 \mathrm{MPa}(0,3$ bar) [i.e. $0,07 \mathrm{MPa}(0,7 \mathrm{bar})$ absolute pressure].

8.3 Diameter distortion

9.1 Butt-welded joint

The joint shall be made in accordance with the instructions given by the pipe manufacturer.

9.2 Elastomeric sealing ring socket joint

The socket joint shall comply with the specifications of this International Standard. The dimensions of the sealing elements are dependent on the specific system and shall meet the manufacturer's specifications. These elements shall not have a detrimental effect on the pipe or fittings, as demonstrated by the functional requirements.

Further requirements will be the subject of future specifications (for rubber sealing rings for drainage purposes, see ISO 4633:1983, Rubber seals - Joint rings for water supply, drainage and sewerage pipelines - Specification for materials).

9.3 Flanged joint

The flanges shall comply with ISO 3663 or be the subject of a technical agreement between the in-
terestedparties.VIEW
When tested using the method described in annex D , at an ambient temperature ${ }^{\circ} \mathrm{Of}$ ar 9.4 . iother Joints water pressure of $0,05 \mathrm{MPa}(0,5 \mathrm{bar})$ without leakage.
https://standards.iteh.ai/catalog/stand 9f7aa1c0e75d

8.4 Angular deflection

When tested using the method described in annex E, at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$, the joint shall withstand an internal water pressure of $0,05 \mathrm{MPa}(0,5 \mathrm{bar})$ without leakage.
8.5 Combined test (alternative to the tests specified in annex B, annex C, annex D and annex E)

When tested using the method described in annex F, at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$, the joint shall perform satisfactorily in the combination indicated, i.e. no leakage shall occur during stage d) of the test, and during stage e) the pressure shall not rise by more than 10% of the required negative test pressure $(0,03 \mathrm{MPa})$ (see 8.2).

9 Jointing

Pipes and fittings which comply with the specifications of this International Standard may be connected to each other in the following various ways.

When using other jointing methods, such as mechanical socket fusion, ring seal compression fittings or electro-welded sockets, the recommendations given by the manufacturer shall be followed.

10 Delivery conditions

10.1 Appearance

The internal and external surfaces of pipes and fittings shall be smooth and free from grooving, blistering and any other surface discontinuities. The materials shall not contain visible impurities or pores. Pipe ends shall be cleanly cut, and the ends of pipes and fittings shall be square with the axis of the pipe.

10.2 Colour

The colour of pipes and fittings shall normally be black. However, other colours may be supplied as agreed between the interested parties.

11 Marking

Pipes, fittings and sealing rings shall be marked clearly and indelibly so that legibility is maintained for the life of the product under normal conditions of storage, weather and use.

The markings may be integral with the product or on a label. The markings shall not damage the product.

11.1 Pipes

Pipes shall be marked with at least the following information:

- manufacturer's name or trade mark;
- pipe material;
- nominal diameter of pipe;
- nominal wall thickness of pipe;
- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and month and the production site if the manufacturer is producing at several national or international sites
the number of this International Standard.
- classification (where applicable);
- values of angles, if any;
- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and month and the production site if the manufacturer is producing at several national or international sites (may be given on packing only, provided this information is not required on each article by national authorities);
- the number of this International Standard (may be given on packing only, provided this information is not required on each article by national authorities).

11.3 Sealing rings

Sealing rings shall be marked with at least the following information:

- manufacturer's name or trade mark;

Pipes with a nominal laying, length up to and includ- \rightarrow nominal dimension of ring;
ing z_{2} metres shall be marked leat once. Pipes RD PNe
with a nominal laying length greater than z_{2} metres manufacturing information, in plain text or in The value of z_{2} and z_{3} shall be as specified by the authorities in each country.

ISO 8772:1991
https://standards.iteh.ai/catalog/standards/sist/5boredinternational sites.

11.2 Fittings

9f7aalc0e75d/iso-8
Fittings shall be marked with at least the following information:

- manufacturer's name or trade mark;
- fitting material;
- nominal diameter of fitting;

Nō markings are required on sealing rings which are moulded to pipes or fittings or any other marked component.

11.4 Designation of the material (in accordance with ISO 1043-1)

PE-HD

[^0]: (C) ISO 1991

 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case Postale $56 \cdot \mathrm{CH}-1211$ Genève 20 - Switzerland
 Printed in Switzerland

[^1]: 1) To be published. (Revision of ISO 1167:1973)
