INTERNATIONAL

(Subees et racodras lenopolypropylène (PP) pour les systèmes d'assainissement enterrés et les égouts souterrains - Spécifications

ISO 8773:1991
https://standards.iteh.ai/catalog/standards/sist/fab02f71-8973-46c0-ad18-
3414c187b09e/iso-8773-1991

IIIILLIIハIIIIIハI

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote
iTeh STANDARD PREVIEW
International Standard ISO 8773 was prepared by Technical Committee. ISO/TC 138, Plastics pipes, fittings and valves for the fansport of fluids?

Annexes A, B, C, D, E and F form an integral part of this International Standard.
https://standards.iteh.ai/catalog/standards/sist/fab02f71-8973-46c0-ad18-3414c187b09e/iso-8773-1991

[^0]
Polypropylene (PP) pipes and fittings for buried drainage and sewerage systems - Specifications

1 Scope

This International Standard specifies requirements for polypropylene (PP) homopolymer and copolymer pipes, fittings and joints with nominal outside diameters from 110 mm to 2000 mm and for fittings with elastomeric sealing rings of nominal outside diameter from 110 mm to 400 mm , serving as buried gravity drain and sewer pipes for the transportation of soil and waste discharge ofdomestic origin.

It may also be applied to pipes, fittings and joints for discharges of industrial origin, provided chemical and temperature resistance is taken into account.

ISO 8773:1991

ISO 1043-1:1987, Plastics - Symbols - Part 1: Basic polymers and their special characteristics.

ISO 1133:1991, Plastics - Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics.

ISO 1167:-1), Thermoplastics pipes for the transport of fluids - Resistance to internal pressure - Test method and basic specification.

TSO 3126:1974, Plastics pipes - Measurement of dimensions.

ISO 3127:1980, Unplasticized polyvinyl chloride 2 Normative references andards.teh.ai/catalog/standards/sist/(FVC) pipes-for0thel transport of fluids - Determi-

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 265-1:1988, Pipes and fittings of plastics materials - Fittings for domestic and industrial waste pipes - Basic dimensions: Metric series - Part 1: Unplasticized poly(vinyl chloride) (PVC-U).

7nation and specification of resistance to external blows.

ISO 3478:1975, Polypropylene (PP) pipes - Determination of longitudinal reversion.

ISO 3609:1977, Polypropylene (PP) pipes - Tolerances on outside diameters and wall thicknesses.

ISO 3663:1976, Polyethylene (PE) pressure pipes and fittings, metric series - Dimensions of flanges

[^1]
3 Symbols

The symbols used in this International Standard are given in table 1

Table 1 - Symbols

Symbol	Meaning
D	Nominal outside diameter of pipe
$D_{9, \mathrm{~m}}$	Mean outside diameter
$d_{\mathrm{s}, \mathrm{m}}$	Socket mean inside diameter
e	Nominal wall thickness
e_{2}	Wall thickness at socket cylindrical part
e_{3}	Wall thickness at socket groove
l_{1}	Spigot length
l	Nominal length of pipe
A	Length of engagement
C	Length of socket mouth

4 Material

All measurements of dimensions shall be carried out in accordance with ISO 3126.

5.1 Pipe dimensions

The pipe dimensions are illustrated in figure 1

Figure 1 - Dimensions

5.1.1 Outside diameter

4.1 The material shall consist substantially of A Thenominal outside diameter I shall be in accordpolypropylene (PP) (homopolymer or copolymer), to ance with table 2.
which may be added any other additives that areard S.lteh.al)
required for the manufacture of sound, durable pipes and fittings of good surface finish and mechanical strength.
https://standards.iteh.ai/catalog/standards/sist/fab02f71-8973-46c0-ad18-
When sealing rings are retained by means gof rel-87b09e/iso-8773Table 2 - Nominal outside diameter
taining caps or rings, the retaining caps or rings may be made from polymers other than PP provided they conform to the same functional dimensions and test requirements as applied to sockets with either loose or fixed sealing rings.
4.2 The use of the manufacturer's own clean rework material is permissible provided that it conforms to the requirements of this International Standard. No other rework material shall be used.
4.3 Pipes and fittings shall be sufficiently stabilized against thermal ageing and ultraviolet (UV) light ${ }^{2}$)

5 Geometrical characteristics

NOTE 1 The figures are schematic sketches only, to help demonstrate relevant dimensions. They do not necessarily represent manufactured components.

[^2]
5.1.2 Wall thickness

The nominal wall thickness e shall be in accordance with table 3.

Tolerances on wall thickness shall be in accordance with ISO 3609.

Table 3 - Nominal wall thickness
Dimensions in millimetres

Nominal outside diameter	Pipe series				
	S20	S16	S14	S12,5	S10
	Nominal wall thickness				
110	2,7	3.4	3,8	4,2	5,3
125	3,1	3.9	4,4	4,8	6
140	3,5	4,3	4,9	5,4	6,7
160	4	4,9	5,6	6,2	7,7
180	4,4	5,5	6,3	6,9	8,6
200	4,9	6.2	6,9	7.7	9,6
225	5,5	6,9	7,8	8,6	10,8
250	6,2	7,7	8,7	9,6	11,9
280	6,9	8,6	9,7	10,7	13,4
315	7,7	9,7	10,9	12,1	15
355	8,7	10,9	12,3	13,6	16,9
400	9,8	12,3 ${ }^{\circ}$	d3,8	15,3	T 19,1 ,
450	11	13,8	45,6	-17,2	21,5
500	12,3	15,3	17,3	19,1	23,9
560	13,7	17,2	19,4	S21,41	C26,70
630	15,4	19,3	21,8	24,1	30
710	17,4	21,8	24,5	27,2	33.9
800	19,6	24,5	27.6	30,6	38.18
900	22	27,9S:	ta31ards	34,4	loze,9nd
1000	24,5	30,6	34,5	38,214	147, 79 e
1200	29,4	36,7	41,4	45,9	57.2
1400	34,3	42,9	48,3	53,5	-
1600	39,2	49	55,2	61,2	-
1800	44	55,1	62,1	-	-
2000	48,9	61,2	69	-	-
NOTE - These values are in accordance with					
ISO 4065:1978, Thermoplastic pipes - Universal wall					al wall

5.1.3 Length

The nominal length l of a pipe shall be measured as shown in figure 2.

The nominal pipe length shall be agreed between the interested parties.

The tolerance on the agreed pipe length shall be $\pm[(0,1 \%$ of $l)+10 \mathrm{~mm}]$, measured at a temperature of $23^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$.

5.2 Dimensions of fittings

5.2.1 Basic dimensions

Basic dimensions of injection-moulded socketed fittings shall be calculated in accordance with ISO 265-1.

An angle of 60° for branches and bends is also allowable.

5.2.2 Wall thickness

The nominal wall thickness of the body of a fitting shall comply with the values given in table 3. The stiffness of the body of the fitting shall be not less than the stiffness of the corresponding pipe.

5.3 Socket and spigot dimensions of pipes

 and fittings $H W$
S.it53.1.2Basic dimensions

A socket and spigot joint fitted with a sealing component complying with this International Standard shal $17 a c c o m m o d a t e l$ the thermal movement due to temperature variations in waste water of a pipe of nominal length ${ }^{\beta}$) without losing its tightness. The basic dimensions shall be in accordance with table 4 (see also figure 3).

The basic dimensions of sockets and spigots of pipes and fittings shall be calculated as follows:

$$
\begin{aligned}
& A_{\min }=0,2 D+18 \mathrm{~mm} \\
& C_{\max }=0,2 D+18 \mathrm{~mm} \\
& l_{1, \min }=0,4 D+18 \mathrm{~mm}
\end{aligned}
$$

Where sealing rings are firmly fixed and have multiple sealing zones, the dimensions $A_{\text {min }}$ and $C_{\text {max }}$ (see figure 4) shall be measured to the effective sealing point as specified by the manufacturer. $C_{\text {max }}$ shall be checked with a gauge, as this dimension determines the tightness of the joint.

[^3]

Figure ${ }_{2} S_{\text {Nominal pipe tength and definitions }} \mathrm{W}$
 (standards.iteh.ai)

ISO 8773:1991
https://standards.iteh.ai/catalog/standards/sist/fab02f71-8973-46c0-ad18-3414c187b09e/iso-8773-1991

Table 4 - Basic dimensions of sockets and spigots

Nominal outside diameter D	Minimum mean inside diameter of the socket $D_{\mathrm{s}, \mathrm{m}, \min }$	Maximum length of the socket mouth $C_{\max }$	Minimum length of engagement $A_{\text {min }}$	Minimum length of the spigot end $l_{1, \text { min }}$
110	111,1	40	40	62
125	126,3	43	43	68
140	141,4	46	46	74
160	161,6	50	50	82
180	181,7	54	54	90
200	201,9	58	58	98
225	227,1	63	63	108
250	252,4	68	68	118
280	282,6	74	74	130
315	318	81	81	144
355	358,3	85	85	160
400	403,7	98	98	178

Figure 3 - Basic dimensions
Figure 4 - Effective sealing point

5.3.2 Wall thickness

The minimum wall thickness of sockets for sealing joints shall meet the requirements of table 5 (see figure 5 for an example).

Table 5 - Minimum wall thickness of sockets on pipe ends and fittings
Dimensions in millimetres

Nominal outside diameter D	S20 Pipe series S16 S 14 $\mathrm{~S} 12,5$ S 10									
	Minimum wall thickness									
	$e_{2, \text { min }}$	$e_{3, \text { min }}$	$e_{2, \min }$	$e_{3, \min }$	$e_{2, \min }$	$e_{3, \min }$	$e_{2, \min }$	$e_{3, \min }$	$e_{2, \text { min }}$	$e_{3, \min }$
110	2,5	2,1	3,1	2,6	3,5	2,9	3,8	3,2	4,8	4
125	2,8	2,4	3,6	3	4	3,3	4,4	3,6	5,4	4,5
140	3,2	2,7	3,9	3,3	4,5	3,7	4.9	4,1	6,1	5,1
160	3,6	3	4,5	3,7	5	4,2	5,6	4,7	7	5,8
180	4	3,3	5	4,2	5,7	4,8	6,3	5,2	7,8	6,5
200	4,5	3,7	5,6	4,7	6,3	5,2	7	5,8	8,7	7,2
225	5	4,2	6,3	5,2	7	5,9	7,8	6,5	9,8	8,1
250	5,6	4,7	7	5,8	7.9	6,6	8,7	7,2	10,8	9
280	6,3	5,2	7,8	6,5	8,8	7,3	9,7	8.1	12,1	10.1
315	7	5,8	8,8	7,3	9,9	8,2	10,9	9,1	13.5	11.3
355	7,9	6,6	9,9	8,2	11	9,3	12,3	10,2	15,3	12,7
400	8,9	7,4	11,1	9,3	12,5	10,4	13,8	11,5	17,2	14,4

iTeh STANDARD PREVIEW

Figure 5 - Socket details

Figure 6 - Example of a seal retaining cap

Table 6 - Internal pressure test data

Where a scaling ring is firmly retained by means of a retaining component (see figure 6 for an example), the wall thickness of the socket in this areatand phaf of the retaining component may be added together to achieve the required e_{3} dimension provided that they are not separated by the sealing ring.

In all cases, the components shall meet the functional test requirements specified in clause 8.

5.3.3 Inside diameter

The minimum mean inside diameter $d_{s, m}$, min of the cylindrical part of the socket is calculated as follows:

$$
\left.d_{\mathrm{s}, \mathrm{~m}, \min }=1,009 I\right)+0,1 \mathrm{~mm}
$$

The values shall be in accordance with table 4.
NOTE 2 The maximum mean inside diameter $d_{\mathrm{s}, \mathrm{m}, \max }$ depends on the sealing ring shape, dimensions and hardness specified by the manufacturer.

6 Mechanical test requirements

6.1 Internal pressure test

The resistance to internal pressure of the pipe and fitting material shall be confirmed by a hydrostatic internal pressure test in accordance with ISO 1167. The test parameters are given in table 6.

Five test pieces (selected at random) of the same nominal outside diameter shall be tested. 73-1991
The test pieces shall be in pipe form. They are either extruded from the pipe material or, in the case of fittings made of a material different from that of the pipes, injection-moulded to pipe form from the fitting material.

If any of the five test pieces bursts before the specified period of test has elapsed, the test shall be stopped and repeated with a second set of five test pieces taken at random from the batch. In the retest all test pieces shall meet the requirement or the material shall be considered to have failed the test.

6.2 Impact strength

The true impact ratio (TIR), as determined in accordance with ISO 3127, shall not exceed 5% at $0^{\circ} \mathrm{C}$ or 10% at $20^{\circ} \mathrm{C}$.

7 Physical test requirements

7.1 Longitudinal reversion of pipes

The longitudinal reversion of pipes shall not exceed
2% as required by ISO 3480^{4}) and determined in accordance with ISO 3478:1975, method A, under the following conditions:

- bath temperature $T=135^{\circ} \mathrm{C}$ for copolymers;
- bath temperature $T=150^{\circ} \mathrm{C}$ for homopolymers;
- immersion time $t=30 \mathrm{~min}$.

7.2 Oven test for fittings

After testing in accordance with annex B, fittings shall not exhibit excessive blistering, delamination, cracking or signs of weld-line splitting. Weld lines may become pronounced during the test, but this shall not be considered as a failure. Deviations from the original geometric shape shall not be deemed as a failure either. In the vicinity of injection points, the depth of penetration of cracks, etc., shall be less than 50% of the local wall thickness.

7.3 Melt flow rate

The melt flow rate of pipes and fittings shall be tested in accordance with ISO 1133 . The melt flow A 9 Jointing VIEW rate (MFR) shall be as follows: $\operatorname{MFR}(230,5) \leqslant$ $4 \mathrm{~g} / 10 \mathrm{~min}$.

8 Functional test requirements - Sockets with elastomeric sealing ring

(standard

Pipeis and fittings which comply with the specifications of this International Standard may be connected to each other in the following various ways 3414c187b09e $\mathbf{9 1} \mathbf{1}$-87 Butt-welded joint

8.1 Internal hydrostatic pressure

When tested using the method described in annex B, at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, the joint shall withstand an internal water pressure of $0,05 \mathrm{MPa}(0,5$ bar $)$ without leakage.

8.2 External hydrostatic or internal negative air pressure

When tested using the method described in annex C, at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, the joint shall withstand either an external water pressure of $0,05 \mathrm{MPa}(0,5 \mathrm{bar}$) or an internal negative air pressure of $0,03 \mathrm{MPa}$ (0,3 bar) [i.e. $0,07 \mathrm{MPa}(0,7 \mathrm{bar})$ absolute pressure].

8.3 Diameter distortion

When tested using the method described in annex D, at an ambient lemperature of $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$, the joint shall withstand an internal
water pressure of $0,05 \mathrm{MPa}(0,5 \mathrm{bar})$ without leakage.

8.4 Angular deflection

When tested using the method described in annex E, at an ambient temperature of $23^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$, the joint shall withstand an internal water pressure of $0,05 \mathrm{MPa}(0,5 \mathrm{bar})$ without leakage.
8.5 Combined test (alternative to the tests specified in annex B, annex C, annex D and annex E)

When tested using the method described in annex F, at an ambient temperature of $23{ }^{\circ} \mathrm{C} \pm 5{ }^{\circ} \mathrm{C}$, the joints shall perform satisfactorily in the combination indicated, i.e. no leakage shall occur during stage d) of the test, and during stage e) the pressure shall not rise by more than 10% of the required negative test pressure (0,03 MPa) (see 8.2).

The joint shall be made in accordance with the instructions given by the pipe manufacturer.

9.2 Elastomeric sealing ring socket joint

The socket joint shall comply with the specifications of this International Standard. The dimensions of the sealing elements are dependent on the specific system and shall meet the manufacturer's specifications. These elements shall not have a detrimental effect on the pipe or fittings, as demonstrated by the functional requirements.

Further requirements will be the subject of future specifications (for rubber sealing rings for drainage purposes, see ISO 4633:1983, Rubber seals - Joint rings for water supply, drainage and sewerage pipelines - Specification for materials).

9.3 Flanged joint

The flanges shall comply with ISO 3663 or be the subject of a technical agreement between the interested parties.

[^4]
9.4 Other joints

When using other jointing methods, such as mechanical, socket fusion, ring seal compression fittings or electro-welded sockets, the recommendations given by the manufacturer shall be followed.

10 Delivery conditions

10.1 Appearance

The internal and external surfaces of pipes and fittings shall be smooth and free from grooving, blistering and any other surface discontinuities. The materials shall not contain visible impurities or pores. Pipe ends shall be cleanly cut, and the ends of pipes and fittings shall be square with the axis of the pipe.

10.2 Colour

The preferred colour of pipes and fittings is grey or black. However, other colours may be supplied as agreed between the interested parties.

11 Marking

Pipes, fittings and sealing rings shall be marked clearly and indelibly so that legibility is maintained for the life of the product under normal conditions of storage, weather and use.
The markings may be integral with the product or on a label. The markings shall not damage the product.

11.1 Pipes

Pipes shall be marked with at least the following information:

- manufacturer's name or trade mark;
- pipe material;
nominal diameter of pipe;
- nominal wall thickness of pipe;
- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and month and the production site if the manufacturer is producing at several national or international sites;
- the number of this International Standard

Pipes with a nominal laying length up to and including z_{2} metres shall be marked at least once. Pipes
with a nominal laying length greater than z_{2} metres shall be marked at intervals of z_{3} metres at the most. The value of z_{2} and z_{3} shall be as specified by the authorities in each country.

11.2 Fittings

Fittings shall be marked with at least the following information:

- manufacturer's name or trade mark;
- fitting material;
- nominal diameter of fitting;
- classification (where applicable);
- values of angles, if any;
- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and month and the production site if the manufacturer is producing at several national or international sites (may be given on packing only, provided this information is not required on each article by national au-
iteh.ail
- The number of this International Standard (may be given on packing only, provided this information is not required on each article by national 3-1991

11.3 Sealing rings

Sealing rings shall be marked with at least the following information:

- manufacturer's name or trade mark;
- nominal dimension of ring;
- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and the production site if the manufacturer is producing at several national or international sites.

No markings are required on sealing rings which are moulded to pipes or fittings or any other marked component.

11.4 Designation of the material (in

accordance with ISO 1043-1)
PP (homopolymer pipes)
PP-C (copolymer pipes)
PP (homopolymer and copolymer fittings)

[^0]: (C) ISO 1991

 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanicai, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case Postale $56 \cdot \mathrm{CH}-1211$ Genève 20 • Switzerland
 Printed in Switzerland

[^1]: 1) To be published. (Revision of ISO $1167: 1973$)
[^2]: 2) Resistance to ageing and UV light is under study
[^3]: 3) The socket is designed for a nominal length of 6 m . When longer sockets are needed, L-type sockets are recommended.
[^4]: 4) ISO 3480:1976, Polypropylene (PP) pipes - Maximum permissible longitudinal reversion.
